A fifth order implicit method for the numerical solution of differential-algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 978-984 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An implicit two-step Runge–Kutta method of fifth order is proposed for the numerical solution of differential and differential-algebraic equations. The location of nodes in this method makes it possible to estimate the values of higher derivatives at the initial and terminal points of an integration step. Consequently, the proposed method can be regarded as a finite-difference analog of the Obrechkoff method. Numerical results, some of which are presented in this paper, show that our method preserves its order while solving stiff equations and equations of indices two and three. This is the main advantage of the proposed method as compared with the available ones.
@article{ZVMMF_2015_55_6_a5,
     author = {L. M. Skvortsov},
     title = {A fifth order implicit method for the numerical solution of differential-algebraic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {978--984},
     year = {2015},
     volume = {55},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a5/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - A fifth order implicit method for the numerical solution of differential-algebraic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 978
EP  - 984
VL  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a5/
LA  - ru
ID  - ZVMMF_2015_55_6_a5
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T A fifth order implicit method for the numerical solution of differential-algebraic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 978-984
%V 55
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a5/
%G ru
%F ZVMMF_2015_55_6_a5
L. M. Skvortsov. A fifth order implicit method for the numerical solution of differential-algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 978-984. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a5/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Jay L., “Convergence of Runge–Kutta methods for differential-algebraic systems of index 3”, Appl. Numer. Math., 17:2 (1995), 97–118 | MR | Zbl

[3] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[4] Skvortsov L. M., “Kollokatsionnye metody Runge–Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1801–1811 | Zbl

[5] Jackiewich Z., Tracogna S., “A general class of two-step Runge–Kutta methods for ordinary differential equations”, SIAM J. Numer. Anal., 32:5 (1995), 1390–1427 | MR

[6] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl

[7] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018

[8] Mazzia F., Magherini C., Test set for initial value problem solvers, Release 2.4, , 2008 http://pitagora.dm.uniba.it/t̃estset/report/testset.pdf

[9] http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm