@article{ZVMMF_2015_55_6_a4,
author = {M. I. Sumin},
title = {Stable sequential {Kuhn{\textendash}Tucker} theorem in iterative form or a regularized {Uzawa} algorithm in a regular nonlinear programming problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {947--977},
year = {2015},
volume = {55},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a4/}
}
TY - JOUR AU - M. I. Sumin TI - Stable sequential Kuhn–Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 947 EP - 977 VL - 55 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a4/ LA - ru ID - ZVMMF_2015_55_6_a4 ER -
%0 Journal Article %A M. I. Sumin %T Stable sequential Kuhn–Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 947-977 %V 55 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a4/ %G ru %F ZVMMF_2015_55_6_a4
M. I. Sumin. Stable sequential Kuhn–Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 947-977. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a4/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsNMO, M., 2011
[3] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 25–49 | MR | Zbl
[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[5] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[6] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR
[7] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350
[8] Sumin M. I., “Ob ustoichivom sekventsialnom printsipe Lagranzha v vypuklom programmirovanii i ego primenenii pri reshenii neustoichivykh zadach”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 4, 2013, 231–240
[9] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR
[10] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[11] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uch. posobie, Izd-vo Nizhegorodskogo gos. un-ta, N. Novgorod, 2009
[12] Errou K. Dzh., Gurvits L., Udzava Kh., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, Izd-vo inostr. lit., M., 1962
[13] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR
[14] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR | Zbl
[15] Sumin M. I., “Parametric dual regularization in a nonlinear mathematical programming”, Ch. 5, Advances in Mathematics Research, 11, Nova Sci. Publ. Inc., New-York, 2010, 103–134
[16] Kanatov A. V., Sumin M. I., “Sekventsialnaya ustoichivaya teorema Kuna–Takkera v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 53:8 (2013), 1249–1271 | Zbl
[17] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. I: Theory”, Can. J. Math., 38:2 (1986), 431–452 ; “II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | MR | Zbl | MR | Zbl
[18] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR
[19] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lect. Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[20] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Graduate Texts in Mathematics, 178, Springer-Verlag, New York, 1998 | MR | Zbl
[21] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Basic Theory ; v. II, Applications, Springer, Berlin, 2006 | MR
[22] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[23] Hestenes M. R., “Multipliers and gradient methods”, J. Optimizat. Appl., 4 (1969), 303–320 | MR | Zbl
[24] Powell M. J. D., “A method for nonlinear constraints in minimization problems”, Optimizat., ed. R. Fletcher, Academic Press, New-York, 1969, 293–298 | MR
[25] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR
[26] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR
[27] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR
[28] Arutyunov A. V., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR
[29] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikladnykh issledovanii pri mekhan.-matem. f-te MGU, M., 2004