New implementations of the 2-factor method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 933-946 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The so-called 2-factor method was designed for finding singular solutions to nonlinear equations. New ways of implementing this method are proposed. So far, the known variants of the method used a very laborious iteration. Its implementation requires that the singular value decomposition be calculated for the derivative of the equation at hand. The new economical implementation is based on the Gaussian elimination with pivoting. In addition, the potentials for the globalization of convergence of the method are examined. In total, the proposed tools convert the conceptual sketch of the 2-factor method into a truly practical algorithm.
@article{ZVMMF_2015_55_6_a3,
     author = {A. F. Izmailov},
     title = {New implementations of the 2-factor method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {933--946},
     year = {2015},
     volume = {55},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a3/}
}
TY  - JOUR
AU  - A. F. Izmailov
TI  - New implementations of the 2-factor method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 933
EP  - 946
VL  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a3/
LA  - ru
ID  - ZVMMF_2015_55_6_a3
ER  - 
%0 Journal Article
%A A. F. Izmailov
%T New implementations of the 2-factor method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 933-946
%V 55
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a3/
%G ru
%F ZVMMF_2015_55_6_a3
A. F. Izmailov. New implementations of the 2-factor method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 933-946. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a3/

[1] Mittelman H. D., Weber H., “Numerical methods for bifurcation problems — a survey and classification”, Bifurcation Problems and their Numerical Solution, ISNM, 54, Birkhauser, Basel–Boston, 1980, 1–45 | MR

[2] Izmailov A. F., Solodov M. V., “Superlinearly convergent algorithms for solving singular equations and smooth reformulations of complementarity problems”, SIAM J. Optim., 13:2 (2002), 386–405 | MR | Zbl

[3] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optim., 15:1 (2004), 210–228 | MR | Zbl

[4] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl

[5] Izmailov A. F., “Ob odnom klasse opredelyayuschikh sistem dlya osobykh reshenii nelineinykh uravnenii”, Voprosy modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2002, 18–57

[6] Erina M. Yu., Nyutonovskie metody poiska osobykh reshenii nelineinykh uravnenii, Diss. ... kand. fiz.-mat. nauk, M., 2007

[7] Izmailov A. F., Tretyakov A. A., “O lokalnoi regulyarizatsii nekotorykh klassov nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:7 (1996), 15–29 | MR

[8] Izmailov A. F., “Ustoichivye metody dlya otyskaniya 2-regulyarnykh reshenii nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:9 (1996), 22–34 | MR | Zbl

[9] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR | Zbl

[10] Belash K. N., Tretyakov A. A., “Metody resheniya vyrozhdennykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1097–1102 | MR

[11] Izmailov A. F., Tretyakov A. A., Faktor-analiz nelineinykh otobrazhenii, Nauka, M., 1994

[12] Erina M. Yu., Izmailov A. F., “Metod Gaussa–Nyutona dlya otyskaniya osobykh reshenii sistem nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 784–795 | MR | Zbl

[13] Izmailov A. F., Uskov E. I., “Effektivnaya chislennaya approksimatsiya podprostranstva vyrozhdennosti nelineinogo otobrazheniya”, Teoreticheskie i prikladnye zadachi nelineinogo analiza, VTs RAN, M., 2014, 74–87

[14] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR

[15] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR

[16] Grippo L., Lampariello F., Lucidi S., “A nonmonotone line search technique for Newton's method”, SIAM J. Numer. Anal., 23 (1986), 707–716 | MR | Zbl