@article{ZVMMF_2015_55_6_a3,
author = {A. F. Izmailov},
title = {New implementations of the 2-factor method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {933--946},
year = {2015},
volume = {55},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a3/}
}
A. F. Izmailov. New implementations of the 2-factor method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 933-946. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a3/
[1] Mittelman H. D., Weber H., “Numerical methods for bifurcation problems — a survey and classification”, Bifurcation Problems and their Numerical Solution, ISNM, 54, Birkhauser, Basel–Boston, 1980, 1–45 | MR
[2] Izmailov A. F., Solodov M. V., “Superlinearly convergent algorithms for solving singular equations and smooth reformulations of complementarity problems”, SIAM J. Optim., 13:2 (2002), 386–405 | MR | Zbl
[3] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optim., 15:1 (2004), 210–228 | MR | Zbl
[4] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl
[5] Izmailov A. F., “Ob odnom klasse opredelyayuschikh sistem dlya osobykh reshenii nelineinykh uravnenii”, Voprosy modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2002, 18–57
[6] Erina M. Yu., Nyutonovskie metody poiska osobykh reshenii nelineinykh uravnenii, Diss. ... kand. fiz.-mat. nauk, M., 2007
[7] Izmailov A. F., Tretyakov A. A., “O lokalnoi regulyarizatsii nekotorykh klassov nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:7 (1996), 15–29 | MR
[8] Izmailov A. F., “Ustoichivye metody dlya otyskaniya 2-regulyarnykh reshenii nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:9 (1996), 22–34 | MR | Zbl
[9] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR | Zbl
[10] Belash K. N., Tretyakov A. A., “Metody resheniya vyrozhdennykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1097–1102 | MR
[11] Izmailov A. F., Tretyakov A. A., Faktor-analiz nelineinykh otobrazhenii, Nauka, M., 1994
[12] Erina M. Yu., Izmailov A. F., “Metod Gaussa–Nyutona dlya otyskaniya osobykh reshenii sistem nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 784–795 | MR | Zbl
[13] Izmailov A. F., Uskov E. I., “Effektivnaya chislennaya approksimatsiya podprostranstva vyrozhdennosti nelineinogo otobrazheniya”, Teoreticheskie i prikladnye zadachi nelineinogo analiza, VTs RAN, M., 2014, 74–87
[14] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR
[15] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR
[16] Grippo L., Lampariello F., Lucidi S., “A nonmonotone line search technique for Newton's method”, SIAM J. Numer. Anal., 23 (1986), 707–716 | MR | Zbl