@article{ZVMMF_2015_55_6_a13,
author = {A. V. Kel'manov and S. A. Khamidullin},
title = {An approximation polynomial-time algorithm for a sequence bi-clustering problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1076--1085},
year = {2015},
volume = {55},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a13/}
}
TY - JOUR AU - A. V. Kel'manov AU - S. A. Khamidullin TI - An approximation polynomial-time algorithm for a sequence bi-clustering problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1076 EP - 1085 VL - 55 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a13/ LA - ru ID - ZVMMF_2015_55_6_a13 ER -
%0 Journal Article %A A. V. Kel'manov %A S. A. Khamidullin %T An approximation polynomial-time algorithm for a sequence bi-clustering problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1076-1085 %V 55 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a13/ %G ru %F ZVMMF_2015_55_6_a13
A. V. Kel'manov; S. A. Khamidullin. An approximation polynomial-time algorithm for a sequence bi-clustering problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1076-1085. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a13/
[1] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. AN, 421:5 (2008), 590–592 | Zbl
[2] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 2059–2067 | MR
[3] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach klasternogo analiza vektornykh posledovatelnostei”, Diskret. analiz i issled. operatsii, 20:2 (2013), 47–57 | MR
[4] Anil K., Jain K., “Data clustering: 50 years beyond $k$-means”, Pat. Recognit. Let., 31 (2010), 651–666
[5] Hastie T., Tibshirani R., Friedman J., The elements of statistical learning: data mining, inference, and prediction, Springer-Verlag, New York, 2001 | MR | Zbl
[6] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of euclidean sum-of-squares clustering”, Machine Learn., 75:2 (2009), 245–248
[7] Kel'manov A. V., Jeon B., “A Posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. on Signal Proc., 52:3 (2004), 645–656 | MR
[8] Carter J. A., Agol E. et al., “Kepler-36: A pair of planets with neighboring orbits and dissimilar densities”, Sci., 337:6094 (2012), 556–559
[9] Carter J. A., Agol E., “The quasiperiodic automated transit search algorithm”, The Astrophysic. J., 765:2 (2013) | DOI
[10] Kelmanov A. V., “Problema off-line obnaruzheniya povtoryayuschegosya fragmenta v chislovoi posledovatelnosti”, Tr. In-ta matem. i mekhan. UrO RAN, 14, no. 2, 2008, 81–88 | Zbl
[11] Garey M. R., Johnson D. S., Computers and intractability: A Guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl
[12] Kelmanov A. V., Khandeev V. I., “Polinomialnyi algoritm s otsenkoi tochnosti 2 dlya resheniya odnoi zadachi klasternogo analiza”, Diskret. analiz i issled. operatsii, 20:4 (2013), 36–45 | MR
[13] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 807–820 | MR | Zbl
[14] Kelmanov A. V., Romanchenko S. M., “Priblizhennyi algoritm dlya resheniya odnoi zadachi poiska podmnozhestva vektorov”, Diskret. analiz i issled. operatsii, 18:1 (2011), 61–69 | Zbl