Preconditioning of gas dynamics equations in compressible gas flow computations at low mach numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1058-1075 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Features of the simulation of low-velocity inviscid and viscous compressible gas flows are considered, and a finite-volume discretization of gas dynamics equations at low Mach numbers on unstructured meshes is discussed. Preconditioning based on the use of physical variables is used to speed up the convergence of time marching to a steady state and to improve the accuracy of the steady-state solution. The structure of the preconditioning matrix and the diagonalization of the Jacobian of the preconditioned system of equations are discussed. The capabilities of this approach are demonstrated using model gasdynamic simulations ing a wide range of Mach numbers.
@article{ZVMMF_2015_55_6_a12,
     author = {K. N. Volkov and A. G. Karpenko},
     title = {Preconditioning of gas dynamics equations in compressible gas flow computations at low mach numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1058--1075},
     year = {2015},
     volume = {55},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a12/}
}
TY  - JOUR
AU  - K. N. Volkov
AU  - A. G. Karpenko
TI  - Preconditioning of gas dynamics equations in compressible gas flow computations at low mach numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1058
EP  - 1075
VL  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a12/
LA  - ru
ID  - ZVMMF_2015_55_6_a12
ER  - 
%0 Journal Article
%A K. N. Volkov
%A A. G. Karpenko
%T Preconditioning of gas dynamics equations in compressible gas flow computations at low mach numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1058-1075
%V 55
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a12/
%G ru
%F ZVMMF_2015_55_6_a12
K. N. Volkov; A. G. Karpenko. Preconditioning of gas dynamics equations in compressible gas flow computations at low mach numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1058-1075. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a12/

[1] Wesseling P., Principles of computational fluid dynamics, Springer, 2000 | MR | Zbl

[2] Chorin A. J., “A numerical method for solving incompressible viscous flow problems”, J. Comput. Phys., 2:1 (1967), 12–26 | Zbl

[3] Chorin A. J., “Numerical solution of the Navier–Stokes equations”, Mathematics of Computation, 22:104 (1968), 745–762 | MR | Zbl

[4] Patankar S. V., Spalding D. B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, Internat. J. Heat and Mass Transfer, 15:10 (1972), 1787–1806 | Zbl

[5] Briley W. R., McDonald H., “Solution of the multidimensional compressible Navier–Stokes equations by a generalized implicit method”, J. Comput. Phys., 24:4 (1977), 372–397 | MR | Zbl

[6] MacCormack R. W., Current status of numerical solutions of the Navier–Stokes equations, AIAA Paper No 85-0032, 1985

[7] Yoon S., Kwak D., LU-SGS implicit algorithm for three-dimensional incompressible Navier–Stokes equations with source term, AIAA Paper No 89-1964, 1989

[8] Kwak D., Kiris C., Housman J., “Implicit methods for viscous incompressible flows”, Computers and Fluids, 41:1 (2011), 51–64 | MR | Zbl

[9] Choi D., Merkle C. L., “Application of time-iterative schemes to incompressible flow”, AIAA Journal, 23:10 (1985), 1518–1524 | MR | Zbl

[10] Merkle C. L., Choi Y.-H., “Computation of low-speed compressible flows with time marching procedures”, Internat. J. for Numerical Meth. in Engng., 25:2 (1988), 293–311 | Zbl

[11] Choi Y.-H., Merkle C. L., “The application of preconditioning in viscous flows”, J. Comput. Phys., 105:2 (1993), 207–223 | MR | Zbl

[12] Volpe G., “Performance of compressible flow codes at low Mach numbers”, AIAA Journal, 31:1 (1993), 49–56 | Zbl

[13] Pierce N. A., Giles M. B., Preconditioning compressible flow calculations on stretched meshes, AIAA Paper No 96-0889, 1996

[14] Pierce N. A., Giles M. B., “Preconditioned multigrid method for compressible flow calculations on stretched meshes”, J. Comput. Phys., 136:2 (1997), 425–445 | MR | Zbl

[15] Volkov K. N., Emelyanov V. N., Vychislitelnye tekhnologii v zadachakh mekhaniki zhidkosti i gaza, Fizmatlit, M., 2012

[16] Weiss J. M., Smith W. A., “Preconditioning applied to variable and constant density flows”, AIAA Journal, 33:11 (1995), 2050–2057 | Zbl

[17] Turkel E., Fiterman A., van Leer B., Preconditioning and the limit to the incompressible flow equations, ICASE Report No 93-42, 1993

[18] Turkel E., Vatsa V., Radespiel R., Preconditioning methods for low-speed flows, AIAA Paper No 96-2640, 1996

[19] Turkel E., Preconditioning-squared methods for multidimensional aerodynamics, AIAA Paper No 97-2025, 1997

[20] Turkel E., Radespiel R., Kroll N., “Assessment of preconditioning methods for multidimensional aerodynamics”, Computers and Fluids, 26:6 (1997), 613–634 | Zbl

[21] Darmofal D. L., Schmid P. J., “The importance of eigenvectors for local preconditioning of the Euler equations”, J. Comput. Phys., 127:2 (1996), 346–362 | MR | Zbl

[22] Guillard H., Viozat C., “On the behaviour of the upwind schemes in the low Mach number limit”, Computers and Fluids, 28:1 (1999), 63–86 | MR | Zbl

[23] Weiss J. M., Maruszewski J. P., Smith W. A., “Implicit solution of preconditioned Navier–Stokes equations using algebraic multigrid”, AIAA Journal, 37:1 (1999), 29–36

[24] Lee S.-H., “Cancellation problem of preconditioning method at low Mach numbers”, J. Comput. Phys., 225:2 (2007), 1199–1210 | Zbl

[25] Shuen J.-S., Chen K.-H., Choi Y., “A coupled implicit method for chemical non-equilibrium flows at all speeds”, J. Comput. Phys., 106:2 (1993), 306–318 | Zbl

[26] Housman J., Kiris C., Hafez M., “Preconditioned methods for simulations of low speed compressible flows”, Computers and Fluids, 38:7 (2009), 1411–1423 | Zbl

[27] Venkateswaran S., Merkle C. L., Analysis of preconditioning methods for the Euler and Navier–Stokes equations, Von Karman Institute Lecture Series on CFD, 1999-03, 1999

[28] Darmofal D. L., Moinier P., Giles M. B., “Eigenmode analysis of boundary conditions for the one-dimensional preconditioned Euler equations”, J. Comput. Phys., 160:1 (2000), 369–384 | MR | Zbl

[29] Colin Y., Deniau H., Boussuge J.-F., “A robust low speed preconditioning formulation: application to air intake flows”, Computers and Fluids, 47:1 (2011), 1–15 | MR | Zbl

[30] Moinier P., Giles M. B., “Compressible Navier–Stokes equations for low Mach number applications”, Proc. of the ECCOMAS Computational Fluid Dynamics Conference (4–7 September 2001, Swansea, United Kingdom), 2001

[31] Volkov K. N., “Predobuslovlivanie uravnenii Eilera i Nave–Stoksa pri modelirovanii nizkoskorostnykh techenii na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1868–1884 | MR | Zbl

[32] van Leer V., Lee W., Roe P., Characteristic time-stepping or local preconditioning of the Euler equations, AIAA Paper No 91-1552, 1991

[33] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | MR | Zbl

[34] Eidelman S., Colella P., Shreeve R. P., “Application of the Godunov method and its second-order extension to cascade flow modeling”, AIAA Journal, 22:11 (1984), 1609–1615 | Zbl