On $t$-local solvability of inverse scattering problems in two-dimensional layered media
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1039-1057 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of two-dimensional inverse scattering problems for the Klein–Gordon equation and the Dirac system in a time-local formulation is analyzed in the framework of the Galerkin method. A necessary and sufficient condition for the unique solvability of these problems is obtained in the form of an energy conservation law. It is shown that the inverse problems are solvable only in the class of potentials for which the stationary Navier–Stokes equation is solvable.
@article{ZVMMF_2015_55_6_a11,
     author = {A. V. Baev},
     title = {On $t$-local solvability of inverse scattering problems in two-dimensional layered media},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1039--1057},
     year = {2015},
     volume = {55},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a11/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - On $t$-local solvability of inverse scattering problems in two-dimensional layered media
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1039
EP  - 1057
VL  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a11/
LA  - ru
ID  - ZVMMF_2015_55_6_a11
ER  - 
%0 Journal Article
%A A. V. Baev
%T On $t$-local solvability of inverse scattering problems in two-dimensional layered media
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1039-1057
%V 55
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a11/
%G ru
%F ZVMMF_2015_55_6_a11
A. V. Baev. On $t$-local solvability of inverse scattering problems in two-dimensional layered media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1039-1057. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a11/

[1] Blagoveschenskii A. S., “Ob obratnoi zadache teorii rasprostraneniya seismicheskikh voln”, Problemy matem. fiziki, Izd-vo Leningr. un-ta, L., 1966, 68–81 | Zbl

[2] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[3] Baev A. V., “Ob odnom metode resheniya obratnoi zadachi rasseyaniya dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 28:1 (1988), 25–33 | MR

[4] Belishev M. I., Blagoveschenskii A. S., Dinamicheskie obratnye zadachi teorii voln, Izd-vo S.-Peterburgskogo universiteta, S.-Pb., 1999

[5] Baev A. V., “O suschestvovanii resheniya obratnoi zadachi dlya giperbolicheskoi sistemy uravnenii”, Primenenie EVM dlya resheniya zadach matem. fiziki, Izd-vo Mosk. un-ta, M., 1985, 10–17

[6] Baev A. V., “O lokalnoi razreshimosti obratnykh zadach rasseyaniya dlya uravneniya Kleina–Gordona i sistemy Diraka”, Matem. zametki, 96:2 (2014), 306–309 | Zbl

[7] Seismorazvedka: spravochnik geofizika, v. 1; 2, Nedra, M., 1990

[8] Kabanikhin S. I., “Proektsionnyi metod resheniya mnogomernykh obratnykh zadach dlya giperbolicheskikh uravnenii”, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka. Sib. otd-nie, Novosibirsk, 1984, 55–59 | MR

[9] Kabanikhin S. I., Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii, Nauka. Sib. otd-nie, Novosibirsk, 1988 | MR

[10] Kabanikhin S. I., Shishlenin M. A., “Boundary control and Gel'fand–Levitan–Krein methods in inverse acoustic problem”, J. Inverse Ill-Posed Problems, 12:2 (2004), 125–144 | MR | Zbl

[11] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009

[12] Kabanikhin S. I., Shishlenin M. A., “Numerical algorithm for two-dimensional inverse acoustic problem based on Gel'fand–Levitan–Krein equation”, J. Inverse Ill-Posed Problems, 18:9 (2011), 979–995 | MR

[13] Baev A. V., “On local solvability of inverse dissipative scattering problems”, J. Inverse Ill-Posed Problems, 9:4 (2001), 227–247 | MR

[14] Baev A. V., Kutsenko N. V., “Reshenie obratnoi obobschennoi zadachi vertikalnogo seismoprofilirovaniya”, Prikladnaya matematika i informatika, 13, Izd-vo MAKS Press, M., 2003, 5–28 | MR

[15] Baev A. V., Kutsenko N. V., “Reshenie zadachi vosstanovleniya koeffitsienta dissipatsii variatsionnym metodom”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1882–1893 | MR

[16] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[17] Baev A. V., “O reshenii obratnoi zadachi dlya volnovogo uravneniya s pomoschyu regulyariziruyuschego algoritma”, Dokl. AN SSSR, 273:3 (1983), 585–587 | MR | Zbl

[18] Baev A. V., “O reshenii odnoi obratnoi zadachi dlya volnovogo uravneniya s pomoschyu regulyariziruyuschego algoritma”, Zh. vychisl. matem. i matem. fiz., 25:1 (1985), 140–146 | MR | Zbl

[19] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988