Sharp estimates for the convergence rate of Fourier–Bessel series
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 917-927 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sharp estimates are derived for the convergence rate of Fourier series in terms of Bessel functions of the first kind for some classes of functions characterized by a generalized modulus of continuity. The Kolmogorov $N$-width of these classes of functions are also estimated.
@article{ZVMMF_2015_55_6_a1,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {Sharp estimates for the convergence rate of {Fourier{\textendash}Bessel} series},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {917--927},
     year = {2015},
     volume = {55},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a1/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - F. V. Abilova
AU  - M. K. Kerimov
TI  - Sharp estimates for the convergence rate of Fourier–Bessel series
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 917
EP  - 927
VL  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a1/
LA  - ru
ID  - ZVMMF_2015_55_6_a1
ER  - 
%0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T Sharp estimates for the convergence rate of Fourier–Bessel series
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 917-927
%V 55
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a1/
%G ru
%F ZVMMF_2015_55_6_a1
V. A. Abilov; F. V. Abilova; M. K. Kerimov. Sharp estimates for the convergence rate of Fourier–Bessel series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 917-927. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a1/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976

[2] Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Doklady na Blgarskama Akademie na naukime. Comptes rendus de l Academie bulgare des Sciences, 46:12 (1993), 9–11 | MR

[3] Abilov V. A., Abilova F. V., “Priblizhenie funktsii summami Fure–Besselya”, Izv. vuzov. Matem., 2001, no. 8, 1–7 | MR

[4] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure na nekotorykh klassakh funktsii v prostranstve $\mathbb{L}_2((a,b), p(x))$”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 966–980 | MR | Zbl

[5] Kolmogorov A. N., Izbrannye trudy. Matem. i mekhan., Nauka, M., 1987

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 455 pp. | MR

[7] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR