@article{ZVMMF_2015_55_5_a7,
author = {A. O. Kondyukov and T. G. Sukacheva},
title = {Phase space of the initial-boundary value problem for the {Oskolkov} system of nonzero order},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {823--829},
year = {2015},
volume = {55},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/}
}
TY - JOUR AU - A. O. Kondyukov AU - T. G. Sukacheva TI - Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 823 EP - 829 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/ LA - ru ID - ZVMMF_2015_55_5_a7 ER -
%0 Journal Article %A A. O. Kondyukov %A T. G. Sukacheva %T Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 823-829 %V 55 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/ %G ru %F ZVMMF_2015_55_5_a7
A. O. Kondyukov; T. G. Sukacheva. Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 823-829. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/
[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164 | MR
[2] Sviridyuk G. A., “Ob odnoi modeli dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vyssh. uchebn. zavedenii. Matematika, 1988, no. 1, 74–79
[3] Oskolkov A. P., “Ob odnoi kvazilineinoi parabolicheskoi sisteme s malym parametrom, approksimiruyuschei sistemu Nave–Stoksa”, Zap. nauchn. sem. LOMI, 96, 1980, 233–236 | MR | Zbl
[4] Sviridyuk G. A., “O mnogoobrazii reshenii odnoi zadachi neszhimaemoi vyazkouprugoi zhidkosti”, Differents. ur-niya, 24:10 (1988), 1846–1848
[5] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. ur-niya, 26:2 (1990), 250–258 | MR | Zbl
[6] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. mat. zh., 31:5 (1990), 109–119
[7] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl
[8] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003 | MR | Zbl
[9] Sviridyuk G. A., “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matem., 57:3 (1993), 192–207 | Zbl
[10] Sviridyuk G. A., “Fazovye prostranstva polulineinykh uravnenii tipa Soboleva s otnositelno silno sektorialnym operatorom”, Algebra i analiz, 6:5 (1994), 252–272
[11] Sviridyuk G. A., Yakupov M. M., “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya sistemy Oskolkova”, Differents. ur-niya, 32:11 (1996), 1538–1543 | MR | Zbl
[12] Sukacheva T. G., “Ob odnoi modeli dvizheniya neszhimaemoi vyazkouprugoi zhidkosti Kelvina–Foigta nenulevogo poryadka”, Differents. ur-niya, 33:4 (1997), 552–557 | MR | Zbl
[13] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967
[14] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR
[15] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[16] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker. Inc., New-York–Basel, 1999 | MR | Zbl
[17] Sidorov N., Loginov B., Sinithin A., Falallev M., Lyapunov–Shmidt methods in nonlinears analysis and applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR
[18] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Uspekhi matem. nauk, 32:4 (1977), 3–54 | MR