Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 823-829 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order is described. The investigation is based on the theory of semilinear Sobolev-type equations and the concepts of a relatively spectral bounded operator and a quasi-stationary trajectory for the corresponding Oskolkov system modeling the plane-parallel flow of the above fluid.
@article{ZVMMF_2015_55_5_a7,
     author = {A. O. Kondyukov and T. G. Sukacheva},
     title = {Phase space of the initial-boundary value problem for the {Oskolkov} system of nonzero order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {823--829},
     year = {2015},
     volume = {55},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/}
}
TY  - JOUR
AU  - A. O. Kondyukov
AU  - T. G. Sukacheva
TI  - Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 823
EP  - 829
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/
LA  - ru
ID  - ZVMMF_2015_55_5_a7
ER  - 
%0 Journal Article
%A A. O. Kondyukov
%A T. G. Sukacheva
%T Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 823-829
%V 55
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/
%G ru
%F ZVMMF_2015_55_5_a7
A. O. Kondyukov; T. G. Sukacheva. Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 823-829. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/

[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164 | MR

[2] Sviridyuk G. A., “Ob odnoi modeli dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vyssh. uchebn. zavedenii. Matematika, 1988, no. 1, 74–79

[3] Oskolkov A. P., “Ob odnoi kvazilineinoi parabolicheskoi sisteme s malym parametrom, approksimiruyuschei sistemu Nave–Stoksa”, Zap. nauchn. sem. LOMI, 96, 1980, 233–236 | MR | Zbl

[4] Sviridyuk G. A., “O mnogoobrazii reshenii odnoi zadachi neszhimaemoi vyazkouprugoi zhidkosti”, Differents. ur-niya, 24:10 (1988), 1846–1848

[5] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. ur-niya, 26:2 (1990), 250–258 | MR | Zbl

[6] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. mat. zh., 31:5 (1990), 109–119

[7] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl

[8] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003 | MR | Zbl

[9] Sviridyuk G. A., “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matem., 57:3 (1993), 192–207 | Zbl

[10] Sviridyuk G. A., “Fazovye prostranstva polulineinykh uravnenii tipa Soboleva s otnositelno silno sektorialnym operatorom”, Algebra i analiz, 6:5 (1994), 252–272

[11] Sviridyuk G. A., Yakupov M. M., “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya sistemy Oskolkova”, Differents. ur-niya, 32:11 (1996), 1538–1543 | MR | Zbl

[12] Sukacheva T. G., “Ob odnoi modeli dvizheniya neszhimaemoi vyazkouprugoi zhidkosti Kelvina–Foigta nenulevogo poryadka”, Differents. ur-niya, 33:4 (1997), 552–557 | MR | Zbl

[13] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[14] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[15] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[16] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker. Inc., New-York–Basel, 1999 | MR | Zbl

[17] Sidorov N., Loginov B., Sinithin A., Falallev M., Lyapunov–Shmidt methods in nonlinears analysis and applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR

[18] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Uspekhi matem. nauk, 32:4 (1977), 3–54 | MR