Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 823-829
Voir la notice de l'article provenant de la source Math-Net.Ru
The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order is described. The investigation is based on the theory of semilinear Sobolev-type equations and the concepts of a relatively spectral bounded operator and a quasi-stationary trajectory for the corresponding Oskolkov system modeling the plane-parallel flow of the above fluid.
@article{ZVMMF_2015_55_5_a7,
author = {A. O. Kondyukov and T. G. Sukacheva},
title = {Phase space of the initial-boundary value problem for the {Oskolkov} system of nonzero order},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {823--829},
publisher = {mathdoc},
volume = {55},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/}
}
TY - JOUR AU - A. O. Kondyukov AU - T. G. Sukacheva TI - Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 823 EP - 829 VL - 55 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/ LA - ru ID - ZVMMF_2015_55_5_a7 ER -
%0 Journal Article %A A. O. Kondyukov %A T. G. Sukacheva %T Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 823-829 %V 55 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/ %G ru %F ZVMMF_2015_55_5_a7
A. O. Kondyukov; T. G. Sukacheva. Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 823-829. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a7/