@article{ZVMMF_2015_55_5_a6,
author = {Feng-Gong Lang and Xiao-Ping Xu},
title = {An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {822},
year = {2015},
volume = {55},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/}
}
TY - JOUR AU - Feng-Gong Lang AU - Xiao-Ping Xu TI - An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 822 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/ LA - en ID - ZVMMF_2015_55_5_a6 ER -
%0 Journal Article %A Feng-Gong Lang %A Xiao-Ping Xu %T An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 822 %V 55 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/ %G en %F ZVMMF_2015_55_5_a6
Feng-Gong Lang; Xiao-Ping Xu. An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/
[1] J. Toomore, J. P. Zahn, J. Latour, E. A. Spiegel, “Stellar convection theory. II: Single-mode study of the second convection zone in an A-type star”, Astrophys. J., 207 (1976), 545–563
[2] G. A. Glatzmaier, “Numerical simulations of stellar convection dynamics at the base of the convection zone”, Fluid Dyn., 31 (1985), 137–150
[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961 ; Dover Books, New York, 1981 | MR | Zbl
[4] E. H. Twizell, A. Boutayeb, “Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer eigenvalue problem”, Proc. R. Soc. London A, 431 (1990), 433–450 | MR | Zbl
[5] A. Boutayeb, E. H. Twizell, “Numerical methods for the solution of special sixth-order boundary value problems”, Int. J. Comput. Math., 45 (1992), 207–233
[6] R. P. Agarwal, Boundary Value Problems for High Order Differential Equations, World Scientific, Singapore, 1986 | MR
[7] A. M. Wazwaz, “The numerical solution of sixth-order boundary value problems by the modified decomposition method”, Appl. Math. Comput., 118 (2001), 311–325 | MR | Zbl
[8] M. A. Noor, S. T. Mohyud-Din, “Homotopy perturbation method for solving sixth-order boundary value problems”, Comp. Math. Appl., 55 (2008), 2953–2972 | MR | Zbl
[9] M. A. Noor, K. I. Noor, S. T. Mohyud-Din, “Variational iteration method for solving sixth-order boundary value problems”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2571–2580 | MR | Zbl
[10] G. B. Loghmani, M. Ahmadinia, “Numerical solution of sixth order boundary value problems with sixth degree B-spline functions”, Appl. Math. Comput., 186 (2007), 992–999 | MR | Zbl
[11] S. S. Siddiqi, G. Akram, “Septic spline solutions of sixth-order boundary value problems”, J. Comput. Appl. Math., 215 (2008), 288–301 | MR | Zbl
[12] S. S. Siddiqi, E. H. Twizell, “Spline solutions of linear sixth-order boundary-value problems”, Int. J. Comput. Math., 60 (1996), 295–304 | MR | Zbl
[13] M. A. Ramadan, I. F. Lashien, W. K. Zahra, “A class of methods based on a septic non-polynomial spline function for the solution of sixth-order two-point boundary value problems”, Int. J. Comput. Math., 85 (2008), 759–770 | MR | Zbl
[14] P. K. Pandey, “Fourth order finite difference method for sixth order boundary value problems”, Comput. Math. Math. Phys., 53 (2013), 57–62 | MR | Zbl
[15] I. J. Schoenberg, “Contribution to the problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99 ; 112–141 | MR | Zbl | MR
[16] C. De Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978 | MR | Zbl
[17] R. H. Wang, Numerical Approximation, Higher Education, Beijing, 1999
[18] D. J. Fyfe, “The use of cubic splines in the solution of two point boundary value problems”, Comput. J., 12 (1969), 188–192 | MR | Zbl
[19] T. R. Lucas, “Error bounds for interpolating cubic splines under various end conditions”, SIAM J. Numer. Anal., 11 (1974), 569–584 | MR | Zbl
[20] S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Learning, New Delhi, 2005