An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study an effective quintic polynomial spline method for numerical solution, and first order to fifth order numerical derivatives of the analytic solution at the knots for a class of sixth order two-point boundary value problems. Our new method is based on a quintic spline interpolation problem. It is easy to implement and is able to provide sixth order accurate numerical results at the knots. Numerical tests show that our method is very practical and effective.
@article{ZVMMF_2015_55_5_a6,
     author = {Feng-Gong Lang and Xiao-Ping Xu},
     title = {An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {822},
     year = {2015},
     volume = {55},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/}
}
TY  - JOUR
AU  - Feng-Gong Lang
AU  - Xiao-Ping Xu
TI  - An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 822
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/
LA  - en
ID  - ZVMMF_2015_55_5_a6
ER  - 
%0 Journal Article
%A Feng-Gong Lang
%A Xiao-Ping Xu
%T An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 822
%V 55
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/
%G en
%F ZVMMF_2015_55_5_a6
Feng-Gong Lang; Xiao-Ping Xu. An effective method for numerical solution and numerical derivatives for sixth order two-point boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a6/

[1] J. Toomore, J. P. Zahn, J. Latour, E. A. Spiegel, “Stellar convection theory. II: Single-mode study of the second convection zone in an A-type star”, Astrophys. J., 207 (1976), 545–563

[2] G. A. Glatzmaier, “Numerical simulations of stellar convection dynamics at the base of the convection zone”, Fluid Dyn., 31 (1985), 137–150

[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961 ; Dover Books, New York, 1981 | MR | Zbl

[4] E. H. Twizell, A. Boutayeb, “Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer eigenvalue problem”, Proc. R. Soc. London A, 431 (1990), 433–450 | MR | Zbl

[5] A. Boutayeb, E. H. Twizell, “Numerical methods for the solution of special sixth-order boundary value problems”, Int. J. Comput. Math., 45 (1992), 207–233

[6] R. P. Agarwal, Boundary Value Problems for High Order Differential Equations, World Scientific, Singapore, 1986 | MR

[7] A. M. Wazwaz, “The numerical solution of sixth-order boundary value problems by the modified decomposition method”, Appl. Math. Comput., 118 (2001), 311–325 | MR | Zbl

[8] M. A. Noor, S. T. Mohyud-Din, “Homotopy perturbation method for solving sixth-order boundary value problems”, Comp. Math. Appl., 55 (2008), 2953–2972 | MR | Zbl

[9] M. A. Noor, K. I. Noor, S. T. Mohyud-Din, “Variational iteration method for solving sixth-order boundary value problems”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2571–2580 | MR | Zbl

[10] G. B. Loghmani, M. Ahmadinia, “Numerical solution of sixth order boundary value problems with sixth degree B-spline functions”, Appl. Math. Comput., 186 (2007), 992–999 | MR | Zbl

[11] S. S. Siddiqi, G. Akram, “Septic spline solutions of sixth-order boundary value problems”, J. Comput. Appl. Math., 215 (2008), 288–301 | MR | Zbl

[12] S. S. Siddiqi, E. H. Twizell, “Spline solutions of linear sixth-order boundary-value problems”, Int. J. Comput. Math., 60 (1996), 295–304 | MR | Zbl

[13] M. A. Ramadan, I. F. Lashien, W. K. Zahra, “A class of methods based on a septic non-polynomial spline function for the solution of sixth-order two-point boundary value problems”, Int. J. Comput. Math., 85 (2008), 759–770 | MR | Zbl

[14] P. K. Pandey, “Fourth order finite difference method for sixth order boundary value problems”, Comput. Math. Math. Phys., 53 (2013), 57–62 | MR | Zbl

[15] I. J. Schoenberg, “Contribution to the problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99 ; 112–141 | MR | Zbl | MR

[16] C. De Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978 | MR | Zbl

[17] R. H. Wang, Numerical Approximation, Higher Education, Beijing, 1999

[18] D. J. Fyfe, “The use of cubic splines in the solution of two point boundary value problems”, Comput. J., 12 (1969), 188–192 | MR | Zbl

[19] T. R. Lucas, “Error bounds for interpolating cubic splines under various end conditions”, SIAM J. Numer. Anal., 11 (1974), 569–584 | MR | Zbl

[20] S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Learning, New Delhi, 2005