Flat expansions and their applications
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 807-821 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Polynomial ordinary differential equations (ODEs) near a singular point are considered. Families of solutions to ODEs that are exponentially close to a solution represented by a formal power series are studied. It is shown that, for systems of ODEs in the plane, all solutions of such a family are uniquely determined by a series of flat functions. Flat expansions are poorly understood. The power series involved in flat expansions can converge or diverge. Examples of computations of flat expansions are given, and their applications are considered. A flat expansion of the solution to the Blasius problem at infinity is calculated. It is shown that this asymptotic expansion can be matched with the Blasius power series expansion at the origin.
@article{ZVMMF_2015_55_5_a5,
     author = {V. P. Varin},
     title = {Flat expansions and their applications},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {807--821},
     year = {2015},
     volume = {55},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a5/}
}
TY  - JOUR
AU  - V. P. Varin
TI  - Flat expansions and their applications
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 807
EP  - 821
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a5/
LA  - ru
ID  - ZVMMF_2015_55_5_a5
ER  - 
%0 Journal Article
%A V. P. Varin
%T Flat expansions and their applications
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 807-821
%V 55
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a5/
%G ru
%F ZVMMF_2015_55_5_a5
V. P. Varin. Flat expansions and their applications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 807-821. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a5/

[1] Segur H., Tanveer S., Levine H., Asymptotics beyond all orders, NATO ASI Series B: Physics, 284, Plenum Press, N. Y., 1991 | MR | Zbl

[2] Edgar G. A., Transseries for beginners, 2009, arXiv: 0801.4877v5 | MR

[3] Olver F. W. J., Asymptotics and special functions, Acad. Press, N. Y., 1974, 572 pp. | MR

[4] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–140

[5] Hille E., Ordinary differential equations in the complex domain, John Wiley Sons, New-York, 1976 | MR | Zbl

[6] Euler L., “De seriebus divergentibus”, Novi Comment. Acad. Sci. Petropolitanae, 5 (1754/55), 205–237; reprint: Opera omnia. Ser. I, 14, Teubner, Leipzig, 1925, 585–617

[7] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funktsionalnyi analiz i ego prilozheniya, 23:4 (1989), 64–74 | MR | Zbl

[8] Blasius H., “Grenzschichten in Flüssigkeiten mit kleiner Reibung”, Z. Math. Phys., 56 (1908), 1–37; reprint: The boundary layers in fluids with little friction, Tech. Memo. No 1256, National Advisory Committee for Aeronautics

[9] Abramowitz M., Stegun I., Handbook of mathematical functions, Dover, New York, 1972

[10] Brighi B., Fruchard A., Sari T., “On the Blasius problem”, Adv. Diff. Eqn., 13 (2008), 509–600 | MR | Zbl

[11] Boyd J. P., “The Blasius function in the complex plane”, Experiment. Math., 8 (1999), 381–394 | MR | Zbl

[12] Boyd J. P., “The Blasius function: computations before computers, the value of tricks, undergraduate projects, and open research problems”, SIAM Review, 50:4 (2008), 791–804 | MR | Zbl

[13] Weyl H., “Concerning the differential equations of some boundary-layer problems”, Proc. Nat. Acad. Sci., 27 (1941), 578–583 | MR

[14] Varin V. P., “A solution of the Blasius problem”, Comp. Math. Math. Phys., 53:2 (2013), 194–204 | MR | Zbl

[15] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR