@article{ZVMMF_2015_55_5_a3,
author = {A. S. Antipin and O. O. Vasilieva},
title = {Dynamic method of multipliers in terminal control},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {776--797},
year = {2015},
volume = {55},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a3/}
}
TY - JOUR AU - A. S. Antipin AU - O. O. Vasilieva TI - Dynamic method of multipliers in terminal control JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 776 EP - 797 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a3/ LA - ru ID - ZVMMF_2015_55_5_a3 ER -
A. S. Antipin; O. O. Vasilieva. Dynamic method of multipliers in terminal control. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 776-797. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a3/
[1] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2009
[2] Vasilev F. P., Metody optimizatsii, v. 1, 2, Izd-vo MTsNMO, M., 2011
[3] Antipin A. S., “Ravnovesnoe programmirovanie modeli i metody resheniya”, Izvestiya IGU. Ser. “Matematika”, 2:1 (2009), 8–36
[4] Antipin A. S., “Two-person game with Nash equilibrium in optimal control problems”, Optim. Lett., 6:7 (2012), 1349–1378 | MR | Zbl
[5] Antipin A. S., Khoroshilova E. V., “Lineinoe programmirovanie i dinamika”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 2, 2013, 7–25
[6] Antipin A. S., Khoroshilova E. V., “Optimalnoe upravlenie so svyazannymi nachalnymi i terminalnymi usloviyami”, Tr. In-ta matem. i mekhan. UrO RAN, 20, no. 2, 2014, 13–28
[7] Antipin A. S., “Terminalnoe upravlenie kraevymi modelyami”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 257–285 | MR | Zbl
[8] Antipin A. S., Vasilieva O. O., “Augmented Lagrangrian method for optimal control problems”, Analysis, Modelling, Optimization, and Numerical Tecniques, Springer Proc. in Mathematics Statistics, 121, eds. G. Olivar Tost, O. Vasilieva, 2015, 1–36 | Zbl
[9] Antipin A. S., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsii Lagranzha”, Ekonomika i matem. metody, XII:6 (1976), 1164–1173 | Zbl
[10] Antipin A. S., “Ob odnom metode otyskaniya sedlovoi tochki modifitsirovannoi funktsii Lagranzha”, Ekonomika i mat. metody, 13:3 (1977), 560–565 | MR | Zbl
[11] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR
[12] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[13] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976
[14] Antipin A. S., “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomatika i telemekhanika, 1997, no. 8, 125–137 | MR | Zbl
[15] Antipin A. S., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1327–1339 | MR | Zbl
[16] Antipin A. S., “Extra-proximal methods for solving two-person nonzero-sum games”, Math. Program. Ser. B, 120:1 (2009), 147–177 | MR | Zbl
[17] Rockafellar R. T., “Augmented Lagrangians and applications of the proximal point algorithm in convex programming”, Math. Oper. Res., 1:2 (1976), 97–116 | MR | Zbl
[18] Hager W. W., “Multiplier methods for nonlinear optimal control”, SIAM J. Numer. Anal., 27:4 (1990), 1061–1080 | MR | Zbl
[19] Vasilieva O. O., “The search of equilibrium strategies for controlled boundary value problem”, Asian J. of Control., 3:1 (2001), 50–56
[20] Vasileva O. O., “Poisk ravnovesnykh upravlenii dlya upravlyaemykh kraevykh zadach”, Izv. IGU. Ser. Matematika, 1:1 (2007), 70–85
[21] Vasilieva O. O., Vasil'ev O. V., “On the search for equilibrium controls in an $m$-person differential game”, Russian Math., 44:12 (2000), 7–12 | MR
[22] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR
[23] Rockafellar R. T., Wets R. J.-B., Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer-Verlag, Berlin, 1998 | MR | Zbl