Asymptotically optimal dualization algorithms
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 895-910
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The design of efficient on average algorithms for discrete enumeration problems is studied. The dualization problem, which is a central enumeration problem, is considered. New asymptotically optimal dualization algorithms are constructed. It is shown that they are superior in time costs to earlier constructed asymptotically optimal dualization algorithms and other available dualization algorithms with different design features.
            
            
            
          
        
      @article{ZVMMF_2015_55_5_a14,
     author = {E. V. Djukova and P. A. Prokofjev},
     title = {Asymptotically optimal dualization algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {895--910},
     publisher = {mathdoc},
     volume = {55},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/}
}
                      
                      
                    TY - JOUR AU - E. V. Djukova AU - P. A. Prokofjev TI - Asymptotically optimal dualization algorithms JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 895 EP - 910 VL - 55 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/ LA - ru ID - ZVMMF_2015_55_5_a14 ER -
E. V. Djukova; P. A. Prokofjev. Asymptotically optimal dualization algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 895-910. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/
