Asymptotically optimal dualization algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 895-910

Voir la notice de l'article provenant de la source Math-Net.Ru

The design of efficient on average algorithms for discrete enumeration problems is studied. The dualization problem, which is a central enumeration problem, is considered. New asymptotically optimal dualization algorithms are constructed. It is shown that they are superior in time costs to earlier constructed asymptotically optimal dualization algorithms and other available dualization algorithms with different design features.
@article{ZVMMF_2015_55_5_a14,
     author = {E. V. Djukova and P. A. Prokofjev},
     title = {Asymptotically optimal dualization algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {895--910},
     publisher = {mathdoc},
     volume = {55},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/}
}
TY  - JOUR
AU  - E. V. Djukova
AU  - P. A. Prokofjev
TI  - Asymptotically optimal dualization algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 895
EP  - 910
VL  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/
LA  - ru
ID  - ZVMMF_2015_55_5_a14
ER  - 
%0 Journal Article
%A E. V. Djukova
%A P. A. Prokofjev
%T Asymptotically optimal dualization algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 895-910
%V 55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/
%G ru
%F ZVMMF_2015_55_5_a14
E. V. Djukova; P. A. Prokofjev. Asymptotically optimal dualization algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 895-910. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a14/