On spectral geometry for the one-speed particle transport operator
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 846-849 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that, among all domains of identical measure, the ball minimizes the first eigenvalue of the one-speed particle transport operator in a multidimensional Euclidean space.
@article{ZVMMF_2015_55_5_a10,
     author = {D. Suragan},
     title = {On spectral geometry for the one-speed particle transport operator},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {846--849},
     year = {2015},
     volume = {55},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a10/}
}
TY  - JOUR
AU  - D. Suragan
TI  - On spectral geometry for the one-speed particle transport operator
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 846
EP  - 849
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a10/
LA  - ru
ID  - ZVMMF_2015_55_5_a10
ER  - 
%0 Journal Article
%A D. Suragan
%T On spectral geometry for the one-speed particle transport operator
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 846-849
%V 55
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a10/
%G ru
%F ZVMMF_2015_55_5_a10
D. Suragan. On spectral geometry for the one-speed particle transport operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 846-849. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a10/

[1] Anikonov D. S., Nazarov V. G., “Zadacha dvurakursnoi tomografii”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 372–378 | MR | Zbl

[2] Smedley-Stevenson R. P., “A new analytic solution of the one-speed neutron transport equation for adjacent half-spaces with isotropic scattering”, Annals of Nuclear Energy, 46 (2012), 218–231

[3] Stepin S. A., “Volnovye operatory dlya linearizovannogo uravneniya Boltsmana v odnoskorostnoi teorii perenosa”, Matem. sb., 192:1 (2001), 139–160 | MR | Zbl

[4] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Izd-vo AN SSSR, M., 1961, 3–158

[5] Marchuk G. I., Metody rascheta atomnykh reaktorov, Gosatomizdat, M., 1961

[6] Marshak R. E., “Theory of the slowing down of neutrons by elastic collision with atomic nuclei”, Revs mod. Phys., 19 (1947), 185–238 | MR

[7] Vladimirov V. S., “Ob odnom integro-differentsialnom uravnenii”, Izv. AN SSSR. Ser. matem., 21:1 (1957), 3–52 | MR | Zbl

[8] Rayleigh J. W., The theory of sound, Dover Pub., New York, 1945 | MR | Zbl

[9] Henrot A., Extremum problems for eigenvalues of elliptic operators, Birkhauser, Basel, 2006 | MR | Zbl

[10] Burchard A., A short course on rearrangement inequalities, , 2009 http://www.math.toronto.edu/almut/rearrange.pdf

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[12] Kalmenov T. Sh., Suragan D., “A boundary condition and spectral problems for the Newton potentials”, Operator Theory: Advances and Applications, 216, 2011, 187–210 | MR

[13] Kalmenov T. Sh., Suragan D., “Boundary conditions for the volume potential for the polyharmonic equation”, Differential Equations, 48 (2012), 604–608 | MR | Zbl