@article{ZVMMF_2015_55_5_a10,
author = {D. Suragan},
title = {On spectral geometry for the one-speed particle transport operator},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {846--849},
year = {2015},
volume = {55},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a10/}
}
D. Suragan. On spectral geometry for the one-speed particle transport operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 846-849. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a10/
[1] Anikonov D. S., Nazarov V. G., “Zadacha dvurakursnoi tomografii”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 372–378 | MR | Zbl
[2] Smedley-Stevenson R. P., “A new analytic solution of the one-speed neutron transport equation for adjacent half-spaces with isotropic scattering”, Annals of Nuclear Energy, 46 (2012), 218–231
[3] Stepin S. A., “Volnovye operatory dlya linearizovannogo uravneniya Boltsmana v odnoskorostnoi teorii perenosa”, Matem. sb., 192:1 (2001), 139–160 | MR | Zbl
[4] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Izd-vo AN SSSR, M., 1961, 3–158
[5] Marchuk G. I., Metody rascheta atomnykh reaktorov, Gosatomizdat, M., 1961
[6] Marshak R. E., “Theory of the slowing down of neutrons by elastic collision with atomic nuclei”, Revs mod. Phys., 19 (1947), 185–238 | MR
[7] Vladimirov V. S., “Ob odnom integro-differentsialnom uravnenii”, Izv. AN SSSR. Ser. matem., 21:1 (1957), 3–52 | MR | Zbl
[8] Rayleigh J. W., The theory of sound, Dover Pub., New York, 1945 | MR | Zbl
[9] Henrot A., Extremum problems for eigenvalues of elliptic operators, Birkhauser, Basel, 2006 | MR | Zbl
[10] Burchard A., A short course on rearrangement inequalities, , 2009 http://www.math.toronto.edu/almut/rearrange.pdf
[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[12] Kalmenov T. Sh., Suragan D., “A boundary condition and spectral problems for the Newton potentials”, Operator Theory: Advances and Applications, 216, 2011, 187–210 | MR
[13] Kalmenov T. Sh., Suragan D., “Boundary conditions for the volume potential for the polyharmonic equation”, Differential Equations, 48 (2012), 604–608 | MR | Zbl