Numerical methods for control optimization in linear systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 742-757 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical methods are considered for solving optimal control problems in linear systems, namely, terminal control problems with control and phase constraints and time-optimal control problems. Several algorithms with various computer storage requirements are proposed for solving these problems. The algorithms are intended for finding an optimal control in linear systems having certain features, for example, when the reachable set of a system has flat faces.
@article{ZVMMF_2015_55_5_a1,
     author = {A. I. Tyatyushkin},
     title = {Numerical methods for control optimization in linear systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {742--757},
     year = {2015},
     volume = {55},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a1/}
}
TY  - JOUR
AU  - A. I. Tyatyushkin
TI  - Numerical methods for control optimization in linear systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 742
EP  - 757
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a1/
LA  - ru
ID  - ZVMMF_2015_55_5_a1
ER  - 
%0 Journal Article
%A A. I. Tyatyushkin
%T Numerical methods for control optimization in linear systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 742-757
%V 55
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a1/
%G ru
%F ZVMMF_2015_55_5_a1
A. I. Tyatyushkin. Numerical methods for control optimization in linear systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 5, pp. 742-757. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_5_a1/

[1] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976 | MR

[2] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[4] Eaton J. H., “An iterative solution to time-optimal control”, J. Math. Anal. and Appl., 5:2 (1962), 329–344 | MR | Zbl

[5] Vasilev O. V., Tyatyushkin A. I., “K chislennomu resheniyu zadach lineinogo bystrodeistviya”, Differentsialnye i integralnye uravneniya, 2, Izd-vo Irkut. un-ta, Irkutsk, 1973, 57–69

[6] Tyatyushkin A. I., Mnogometodnaya tekhnologiya optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 2006

[7] Tyatyushkin A. I., “A multimethod technique for solving optimal control problem”, Optimization letters, 7 (2012), 1335–1347 | MR | Zbl

[8] Barr R. O., “An efficient computational procedure for a generalized quadratic programming problem”, J. SIAM Control, 7:3 (1969), 415–429 | MR | Zbl

[9] Gibert E. G., “An iterative procedure for computing the minimum of a quadratic from on a convex set”, J. SIAM Control, 4:1 (1966), 61–80 | MR

[10] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR

[11] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR

[12] Tabak D., Kuo B., Optimalnoe upravlenie i matematicheskoe programmirovanie, Nauka, M., 1975 | MR

[13] Gindes V. B., “Odin metod posledovatelnykh priblizhenii dlya resheniya lineinykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 10:1 (1970), 216–223 | MR

[14] Grachev N. I., Filkov A. N., Reshenie zadach optimalnogo upravleniya v sisteme DISO, VTs AN SSSR, M., 1986

[15] Tyatyushkin A. I., Fedunov B. E., “Chislennoe issledovanie svoistv optimalnogo upravleniya v odnoi zadache presledovaniya”, Izv. RAN. TiSU, 2005, no. 3, 104–113 | MR