@article{ZVMMF_2015_55_4_a9,
author = {V. V. Kornev and A. P. Khromov},
title = {Resolvent approach to the {Fourier} method in a mixed problem for the wave equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {621--630},
year = {2015},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a9/}
}
TY - JOUR AU - V. V. Kornev AU - A. P. Khromov TI - Resolvent approach to the Fourier method in a mixed problem for the wave equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 621 EP - 630 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a9/ LA - ru ID - ZVMMF_2015_55_4_a9 ER -
%0 Journal Article %A V. V. Kornev %A A. P. Khromov %T Resolvent approach to the Fourier method in a mixed problem for the wave equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 621-630 %V 55 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a9/ %G ru %F ZVMMF_2015_55_4_a9
V. V. Kornev; A. P. Khromov. Resolvent approach to the Fourier method in a mixed problem for the wave equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 621-630. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a9/
[1] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983, 432 pp.
[2] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, GITTL, M.–L., 1953, 360 pp.
[3] Smirnov V. I., Kurs vysshei matematiki, v 4 t., v. 4, Gostekhizdat, M., 1953, 804 pp.
[4] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhizdat, M., 1953, 282 pp.
[5] Ilin V. A., Izbrannye trudy, v 2 t., v. 1, Izd-vo OOO “Maks-press”, M., 2008, 727 pp.
[6] Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskikh i parabolicheskikh uravnenii”, UMN, 15:2 (1960), 97–154 | MR | Zbl
[7] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo Mosk. un-ta, M., 1991, 112 pp.
[8] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950, 368 pp.
[9] Burlutskaya M. Sh., Khromov A. P., “Smeshannye zadachi dlya giperbolicheskikh uravnenii pervogo poryadka s involyutsiei”, Dokl. AN, 441:2 (2011), 151–154
[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR
[11] Rasulov M. L., Metod konturnogo integrala, Nauka, M., 1964, 462 pp. | MR
[12] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rost. un-ta, Rostov n/D, 1994, 160 pp.
[13] Marchenko V. A., Operatory Shturma–Liuvilya i ikh prilozheniya, Nauk. dumka, Kiev, 1977, 392 pp. | MR
[14] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 538 pp. | MR