@article{ZVMMF_2015_55_4_a6,
author = {A. V. Gasnikov and Yu. E. Nesterov and V. G. Spokoiny},
title = {On the efficiency of a randomized mirror descent algorithm in online optimization problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {582--598},
year = {2015},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a6/}
}
TY - JOUR AU - A. V. Gasnikov AU - Yu. E. Nesterov AU - V. G. Spokoiny TI - On the efficiency of a randomized mirror descent algorithm in online optimization problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 582 EP - 598 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a6/ LA - ru ID - ZVMMF_2015_55_4_a6 ER -
%0 Journal Article %A A. V. Gasnikov %A Yu. E. Nesterov %A V. G. Spokoiny %T On the efficiency of a randomized mirror descent algorithm in online optimization problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 582-598 %V 55 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a6/ %G ru %F ZVMMF_2015_55_4_a6
A. V. Gasnikov; Yu. E. Nesterov; V. G. Spokoiny. On the efficiency of a randomized mirror descent algorithm in online optimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 582-598. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a6/
[1] Nemirovskii A. S., Yudin D. B., Slozhnost zadach i effektivnost metodov optimizatsii, Nauka, M., 1979 http://www2.isye.gatech.edu/ñemirovs/Lect_EMCO.pdf | MR
[2] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31 (2003), 167–175 | MR | Zbl
[3] Nesterov Y., “Primal-dual subgradient methods for convex problems”, Math. Program. Ser. B, 120:1 (2009), 261–283 | MR
[4] Yuditskii A. B., Nazin A. V., Tsybakov A. B., Vayatis N., “Rekurrentnoe agregirovanie otsenok metodom zerkalnogo spuska s usredneniem”, Probl. peredachi informatsii, 41:4 (2005), 78–96 | MR | Zbl
[5] Bubeck S., Introduction to online optimization, Lecture Notes, Princeton University, 2011 http://www.princeton.edu/s̃bubeck/BubeckLectureNotes.pdf
[6] Grigoriadis M., Khachiyan L., “A sublinear-time randomized approximation algorithm for matrix games”, Oper. Res. Lett., 18:2 (1995), 53–58 | MR | Zbl
[7] Juditsky A., Lan G., Nemirovski A., Shapiro A., “Stochastic approximation approach to stochastic programming”, SIAM J. Optimizat., 19:4 (2009), 1574–1609 http://www2.isye.gatech.edu/ñemirovs/ | MR | Zbl
[8] Nazin A. V., Polyak B. T., “Randomizirovannyi algoritm nakhozhdeniya sobstvennogo vektora stokhasticheskoi matritsy s primeneniem k zadache PageRank”, Avtomatika i telemekh., 2011, no. 2, 131–141
[9] Lugosi G., Cesa-Bianchi N., Prediction, learning and games, Cambridge University Press, New York, 2006 | MR | Zbl
[10] Juditsky A., Nazin A. V., Tsybakov A. B., Vayatis N., “Gap-free bounds for stochastic multi-armed bandit”, Proc. 17$^{\mathrm{th}}$ World Congress IFAC (Seoul, Korea, July 6–11, 2008), 11560–11563
[11] Mansour Y., Algorithmic game theory and machine learning, Lect. 1, 2, 6, , 2011 http://www.tau.ac.il/m̃ansour/advanced-agt+ml/
[12] Rakhlin A., Lecture notes on online learning, , 2009 http://stat.wharton.upenn.edu/r̃akhlin/papers/online_learning.pdf
[13] Hazan E., “The convex optimization approach to regret minimization”, Optimiz. for Machine Learning, eds. S. Sra, S. Nowozin, S. Wright, MIT Press, 2011, 287–303
[14] Bubeck S., Cesa-Bianchi N., “Regret analysis of stochastic and nonstochastic multi-armed bandit problems”, Foundation and Trends in Machine Learning, 5:1 (2012), 1–122 http://www.princeton.edu/s̃bubeck/SurveyBCB12.pdf | Zbl
[15] Shi Z., Liu R., Online universal gradient method, 2013, arXiv: 1311.3832v2
[16] Juditsky A., Nemirovski A., “First order methods for nonsmooth convex large-scale optimization. I; II”, Optimizat. for Machine Learning, eds. S. Sra, S. Nowozin, S. Wright, MIT Press, 2012
[17] Boucheron S., Lugoshi G., Massart P., Concentration inequalities: a nonasymptotic theory of independence, Oxford University Press, 2013 | MR | Zbl
[18] Lan G., Nemirovski A., Shapiro A., “Validation analysis of mirror descent stochastic approximation method”, Math. Program., 134:2 (2012), 425–458 | MR | Zbl
[19] Andersen S. P., de Palma A., Thisse J. A.-F., Discrete choice theory of product differentiation, MIT Press, Camb., 1992 | MR
[20] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR
[21] Gasnikov A. V., Dorn Yu. V., Nesterov Yu. E., Shpirko S. V., “O trekhstadiinoi versii modeli statsionarnoi dinamiki transportnykh potokov”, Matem. modelirovanie, 26:6 (2014), 34–70, arXiv: 1405.7630 | Zbl
[22] Gasnikov A. V., Dmitriev D. Yu., “Ob effektivnykh randomizirovannykh algoritmakh poiska vektora PageRank”, Zh. vychisl. matem. i matem. fiz., 55:3 (2015), 355–371, arXiv: 1410.3120 | Zbl
[23] Vyugin V. V., Matematicheskie osnovy teorii mashinnogo obucheniya i prognozirovaniya, MTsNMO, M., 2013 http://www.iitp.ru/upload/publications/6256/vyugin1.pdf
[24] Nemirovski A., “Prox-method with rate of convergence $O(1/T)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems”, SIAM J. Optimizat., 15 (2004), 229–251 | MR | Zbl
[25] Nesterov Y., “Smooth minimization of non-smooth function”, Math. Program. Ser. A, 103:1 (2005), 127–152 | MR | Zbl
[26] Nesterov Y. E., “Subgradient methods for huge-scale optimization problems”, Math. Program. Ser. A, 2014 (to appear) ; CORE Discussion Paper 2012/2, 2012 | MR
[27] Nesterov Y. E., “Efficiency of coordinate descent methods on large scale optimization problem”, SIAM J. Optimizat., 22:2 (2012), 341–362 | MR | Zbl
[28] Bubeck S., Theory of convex optimization for machine learning, 2014, arXiv: 1405.4980
[29] Fercoq O., Richtárik P., Accelerated, parallel and proximal coordinate descent, 2013, arXiv: 1312.5799
[30] Tao T., Struktura i sluchainost, MTsNMO, M., 2013
[31] Motwani R., Raghavan P., Randomized algorithms, Cambridge Univ. Press, 1995 | MR | Zbl
[32] Dubhashi D. P., Panconesi A., Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, 2009 | MR | Zbl
[33] Spielman D. A., Teng S.-H., “Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time”, J. ACM, 51 (2004), 385–463 | MR | Zbl
[34] Ledoux M., Concentration of measure phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl