@article{ZVMMF_2015_55_4_a4,
author = {Buong Nguyen and Thi Thuy Hoa Nguyen},
title = {Tikhonov regularization for mathematical programs with generalized complementarity constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {574},
year = {2015},
volume = {55},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a4/}
}
TY - JOUR AU - Buong Nguyen AU - Thi Thuy Hoa Nguyen TI - Tikhonov regularization for mathematical programs with generalized complementarity constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 574 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a4/ LA - en ID - ZVMMF_2015_55_4_a4 ER -
%0 Journal Article %A Buong Nguyen %A Thi Thuy Hoa Nguyen %T Tikhonov regularization for mathematical programs with generalized complementarity constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 574 %V 55 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a4/ %G en %F ZVMMF_2015_55_4_a4
Buong Nguyen; Thi Thuy Hoa Nguyen. Tikhonov regularization for mathematical programs with generalized complementarity constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a4/
[1] Z. Q. Luo, J. S. D. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge Univ. Press, Cambridge, UK, 1996 | MR
[2] J. Outrata, M. Kocvara, J. Zowe, Nonsmooth Approach to Optimization Problem with Equilibrium Constraints, Kluwer Academic, Dordrecht, 1998 | MR
[3] M. Ferris, J. Pang, “Engineering and economic applications of complementarity constraints”, SIAM Rev., 39:4 (1997), 669–713 | MR | Zbl
[4] M. Fukushima, Z. Q. Luo, J. S. Pang, “A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints”, Comput. Optim. Appl., 10 (1998), 5–34 | MR | Zbl
[5] H. Jiang, D. Ralph, “Smooth SQP methods for mathematical programs with complementarity constraints”, SIAM J. Optim., 10 (2000), 779–808 | MR | Zbl
[6] M. Monteiro, H. Rodrigues, “Combining the regularization strategy and the SQP to solve MPCC-AMATLAV implementation”, J. Comput. Appl. Math., 235:18 (2011), 5348–5356 | MR | Zbl
[7] R. Fletcher, S. Leyffer, D. Ralph, S. Scholtes, “Local convergence of SQP method for mathematical programs with equilibrium constraints”, SIAM J. Optim., 17:1 (2006), 259–286 | MR | Zbl
[8] X. Chen, M. Fukushima, A smoothing method for mathematical programs with P-matrix linear complementarity constraints, Technical Report 2001-008, Department of Applied Mathematics and Physics, Graduate School on Informatics, Kyoto University, Kyoto, Japan, 2001
[9] X. Hu, D. Ralph, “Convergence of a penalty method for mathematical programs with equilibrium constraints”, J. Optim. Theory Appl., 123:2 (2004), 365–390 | MR
[10] X. X. Huang, X. Q. Yang, D. L. Zhu, A sequential smooth penalty approach to mathematical programs with complementarity constraints, Manuscript, Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 2001
[11] Z. Q. Luo, J. S. Pang, D. Ralph, S. Q. Wu, “Exact penalization and stationary conditions of mathematical programs with equilibrium constraints”, Math. Program., 75 (1996), 19–76 | MR | Zbl
[12] S. Scholtes, M. Stohr, “Exact penalization of mathematical programs with complementarity constraints”, SIAM J. Control Optim., 37 (1999), 617–652 | MR | Zbl
[13] M. Monteiro, J. Meira, “A penalty method and a regularization strategy to solve MPCC”, Int. J. Comput. Math., 88:1 (2011), 145–149 | MR | Zbl
[14] M. Pukushima, P. Tseng, “An implementable active-set algorithm for computing a B-stationary point of the mathematical programs with linear complementarity constraints”, SIAM J. Optim., 12 (2002), 724–739 | MR
[15] F. Facchinei, H. Jiang, L. Qi, “A smoothing method for mathematical programs with equilibrium constraints”, Math. Program., 85 (1999), 107–134 | MR | Zbl
[16] M. Pukushima, J. S. Pang, “Convergence of a smoothing continuation method for mathematical programs with complementarity constraints”, Ill-Posed Variational Problems and Regularization Techniques, Lecture Notes in Economics and Mathematica Systems, 447, Springer, Berlin, 1999, 105–116 | MR
[17] G. H. Lin, M. Fukushima, “A modified relaxation scheme for mathematical programs with complementarity constraints”, Ann. Oper. Res., 133:1 (2005), 63–84 | MR | Zbl
[18] S. Scholtes, “Convergence properties of a regularization scheme for mathematical programs with complementarity constraints”, SIAM J. Optim., 11 (2001), 918–936 | MR | Zbl
[19] S. I. Birbil, S. C. Fang, J. Han, “Entropic regularization approach for mathematical programs with equilibrium constraints”, Comput. Oper. Res., 31 (2004), 2249–2262 | MR | Zbl
[20] O. L. Mangasarian, Regularized linear programs equilibrium constraints, Mathematical Programming Technical Report 97-13, November 1997; Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, eds. M. Rikushima, Liqun Qi, Kluwer Academic, 1998, 259–268 | MR
[21] Ng. Buong, “Tikhonov regularization for a general constrained optimization problems”, Comput. Math. Math. Phys., 47:10 (2007), 1583–1588 | MR
[22] F. P. Vasilev, Numerical Methods for Solving Extremal Problems, Nauka, M., 1980 (in Russian) | MR
[23] O. A. Liskovets, Variational Methods for the Solution of Unstable Problems, Nauka i Tekhnika, Minsk, 1981 (in Russian) | MR
[24] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin, 2010 | MR
[25] A. Vardi, “A trust region algorithm for equality constrained minimization: convergence properties and implementation”, SIAM J. Numer. Anal., 4 (1985), 575–591 | MR
[26] Y. Yuan, “A class of globally convergent conjugate gradient methods”, Sci. China, 46 (2003), 253–261 | MR