Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 669-680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic principles of a method for finding approximate analytical solutions of nonstationary heat conduction problems for multilayered structures are described. The method relies on determining a temperature perturbation front and introducing additional boundary conditions. An asymmetric unit step function is used to represent the original multilayered system as a single-layer one with piecewise homogeneous medium properties. Due to the splitting of the heat conduction process into two stages, the original partial differential equation is reduced at each stage to solving an ordinary differential equation. As a result, fairly simple (in form) analytical solutions are obtained with accuracy depending on the number of specified additional boundary conditions (on the number of approximations). It is shown that, as the number of approximations increases, same-type ordinary differential equations are obtained for the unknown time functions at the first and second stages of the process. As a result, analytical solutions can be found with a nearly prescribed degree of accuracy, including small and supersmall times.
@article{ZVMMF_2015_55_4_a13,
     author = {V. A. Kudinov and I. V. Kudinov and M. P. Skvortsova},
     title = {Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {669--680},
     year = {2015},
     volume = {55},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a13/}
}
TY  - JOUR
AU  - V. A. Kudinov
AU  - I. V. Kudinov
AU  - M. P. Skvortsova
TI  - Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 669
EP  - 680
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a13/
LA  - ru
ID  - ZVMMF_2015_55_4_a13
ER  - 
%0 Journal Article
%A V. A. Kudinov
%A I. V. Kudinov
%A M. P. Skvortsova
%T Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 669-680
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a13/
%G ru
%F ZVMMF_2015_55_4_a13
V. A. Kudinov; I. V. Kudinov; M. P. Skvortsova. Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 669-680. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a13/

[1] Kudinov V. A., Kudinov I. V., Metody resheniya parabolicheskikh i giperbolicheskikh uravnenii teploprovodnosti, Knizhnyi dom “Librokom”, M., 2011

[2] Kolyano Yu. M., “Primenenie obobschennykh funktsii v termomekhanike kusochno-odnorodnykh tel”, Matematicheskie metody i fiziko-mekhanicheskie polya, 7, Naukova Dumka, Kiev, 1978, 7–11

[3] Kolyano Yu. M., Popovich V. S., “Nestatsionarnoe temperaturnoe pole v sostykovannykh plastinakh”, Fizika i khimiya obrabotki materialov, 1975, no. 5, 16–23

[4] Antimonov M. S., Kudinov V. A., Stefanyuk E. V., “Analiticheskie resheniya zadach teploprovodnosti dlya tsilindra i shara na osnove opredeleniya fronta temperaturnogo vozmuscheniya”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 681–692 | MR | Zbl

[5] Kudinov V. A., Averin B. V., Stefanyuk E. V., Nazarenko S. A., Analiticheskie metody teploprovodnosti, Samarsk. gos. tekhn. un-t, Samara, 2004

[6] Kudinov V. A., Kudinov I. V., Kotova E. V., Kuznetsova A. E., “Obobschennye funktsii v zadachakh teploprovodnosti dlya mnogosloinykh konstruktsii”, Teplofizika vysokikh temperatur, 51:6 (2013), 912–922

[7] Gudmen T., “Primenenie integralnykh metodov v nelineinykh zadachakh nestatsionarnogo teploobmena”, Problemy teploobmena, Sb. nauchn. tr., Atomizdat, M., 1967, 41–96

[8] Belyaev N. M., Ryadno A. A., Metody nestatsionarnoi teploprovodnosti, Vysshaya shkola, M., 1978

[9] Stefanyuk E. V., Kudinov V. A., “Dopolnitelnye granichnye usloviya v nestatsionarnykh zadachakh teploprovodnosti”, Teplofizika vysokikh temperatur, 47:2 (2009), 269–282

[10] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vysshaya shkola, M., 1985

[11] Stefanyuk E. V., Kudinov V. A., “Poluchenie priblizhennykh analiticheskikh reshenii pri rassoglasovanii nachalnykh i granichnykh uslovii v zadachakh teorii teploprovodnosti”, Izvestiya vyssh. uchebn. zavedenii. Matematika, 2010, no. 4, 63–72 | MR