On a problem in the dynamics of a thermoviscoelastic medium with memory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 653-668 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlocal existence theorem for the weak solution for an initial-boundary value problem for the dynamic model of thermoviscoelasticity with memory along trajectories of motion in the planar case is established.
@article{ZVMMF_2015_55_4_a12,
     author = {V. P. Orlov and M. I. Parshin},
     title = {On a problem in the dynamics of a thermoviscoelastic medium with memory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {653--668},
     year = {2015},
     volume = {55},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a12/}
}
TY  - JOUR
AU  - V. P. Orlov
AU  - M. I. Parshin
TI  - On a problem in the dynamics of a thermoviscoelastic medium with memory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 653
EP  - 668
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a12/
LA  - ru
ID  - ZVMMF_2015_55_4_a12
ER  - 
%0 Journal Article
%A V. P. Orlov
%A M. I. Parshin
%T On a problem in the dynamics of a thermoviscoelastic medium with memory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 653-668
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a12/
%G ru
%F ZVMMF_2015_55_4_a12
V. P. Orlov; M. I. Parshin. On a problem in the dynamics of a thermoviscoelastic medium with memory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 653-668. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a12/

[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983

[2] Orlov V. P., “Issledovanie matematicheskikh modelei termovyazkouprugosti”, Dokl. AN, 343 (1995), 41–46

[3] Orlov V. P., “Local solvability of onedimensional problem of termoviscoelastisity”, Israel J. Math., 78 (1992), 51–54 | MR

[4] Orlov V. O., Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory”, Differential and Integral Equations, 4:1 (1991), 103–115 | MR | Zbl

[5] Orlov V. P., Sobolevskii P. E., “Issledovanie matematicheskikh modelei vyazkouprugosti”, Dokl. AN USSR. Ser. 1, 1989, no. 10, 31–35

[6] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. ur-niya, 38:12 (2002), 1633–1645 | MR | Zbl

[7] Oldroyd J. G., “Non-Newtonian flow of liquids and solids”, Rheology: Theory and Applications, v. 1, AP, New York, 1956, 653–682

[8] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164 | MR

[9] Agranovich Yu. Ya., Sobolevskii P. E., “Issledovanie matematicheskikh modelei vyazkouprugikh zhidkostei”, Dokl. AN USSR. Ser. A, 1989, no. 10, 71–74 | MR

[10] Zvyagin V. G., Dmitrienko V. T., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vyssh. uchebn. zavedenii. Matematika, 508:9 (2004), 24–40

[11] Orlov V. P., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli nelineino-vyazkouprugoi sredy”, Matem. zametki, 84:2 (2008), 238–253 | MR | Zbl

[12] Zvyagin V. G., Orlov V. P., “Razreshimost v slabom smysle sistemy termovyazkouprugosti dlya modeli Dzheffrisa”, Izv. vyssh. uchebn. zavedenii. Matematika, 2013, no. 8, 51–56 | MR

[13] Blanchard D., Bruyere N., Guibe O., “Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation”, Communications on Pure and Appl. Analysis, 12:5 (2013), 2213–2227 | MR | Zbl

[14] Pawlow I., Zajaczkowski W., Global regular solutions to a Kelvin–Voigt type thermoviscoelastic system, 2011, arXiv: 1112.2176v1 [math.AP] | MR

[15] Bonetti E., Bonfanti G., “Existence and uniquencess of the solution to a 3D thermoviscoelastic system”, Electronic J. Diff. Equat., 2003, no. 5, 1–15 | MR

[16] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972

[17] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR

[18] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[19] Lions J.-L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod Gauthiers-Villar, Paris, 1969 | MR | Zbl

[20] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki, URSS, M., 2004

[21] Simon J., “Compact sets in the space $L^p(0, T; B)$”, Ann. Math. Pure Appl., 146 (1988), 65–96 | MR

[22] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR