Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 641-652 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A parallel computation technology for modeling fluid dynamics problems by finite-volume and finite-difference methods of high accuracy is presented. The development of an algorithm, the design of a software implementation, and the creation of parallel programs for computations on large-scale computing systems are considered. The presented parallel technology is based on a multilevel parallel model combining various types of parallelism: with shared and distributed memory and with multiple and single instruction streams to multiple data flows.
@article{ZVMMF_2015_55_4_a11,
     author = {A. V. Gorobets},
     title = {Parallel technology for numerical modeling of fluid dynamics problems by~high-accuracy algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {641--652},
     year = {2015},
     volume = {55},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a11/}
}
TY  - JOUR
AU  - A. V. Gorobets
TI  - Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 641
EP  - 652
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a11/
LA  - ru
ID  - ZVMMF_2015_55_4_a11
ER  - 
%0 Journal Article
%A A. V. Gorobets
%T Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 641-652
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a11/
%G ru
%F ZVMMF_2015_55_4_a11
A. V. Gorobets. Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 641-652. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a11/

[1] Ramirez A., “The Mont-Blanc architecture”, Internat. Supercomputing Conference (ISC 2012) (Hamburg, Germany, June 17–21, 2012)

[2] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002, 608 pp.

[3] Grama A., Karypis G., Kumar V., Gupta A., Introduction to parallel computing, 2-nd edn., Addison-Wesley, Reading, MA, 2003

[4] Vasilevskii Yu. B., Konshin I. N., Kopytov G. V., Terekhov K. M., INMOST — programmnaya platforma i graficheskaya sreda dlya razrabotki parallelnykh chislennykh modelei na setkakh obschego vida, Uchebnoe posobie, Izd-vo MGU, M., 2013, 144 pp.

[5] Aubry R., Houzeaux G., Vazquez M., Cela J. M., “Some useful strategies for unstructured edge-based solvers on shared memory machines”, Internat. J. Numerical Meth. Eng., 85 (2010), 537–561

[6] Bogdanov P. B., Efremov A. A., Gorobets A. V., Sukov S. A., “Primenenie planirovschika dlya effektivnogo obmena dannymi na superkompyuterakh gibridnoi arkhitektury s massivno-parallelnymi uskoritelyami”, Vychisl. metody i programmirovanie, 14 (2013), 122–134

[7] MPI: A Message-Passing Interface Standard, Version 3.0, Message Passing Interface, Forum, , September 21, 2012 http://vAvw.mpi-forum.Org/docs/mpi-3.0/mpi30-report.pdf

[8] OpenMP Application Program Interface, Version 4.0, , July 2013 http://www.openmp.Org/mp-documents/OpenMP4.0.0.pdf

[9] Bogdanov P. V., Efremov A. A., “Programming infrastructure of heterogeneous computing based on OpenCL and its applications”, GPU Technology Conference GTC-2013 (March 18–21, San Jose, California, USA)

[10] Bogdanov P. B., Gorobets A. V., Sukov S. A., “Adaptatsiya i optimizatsiya bazovykh operatsii gazodinamicheskogo algoritma na nestrukturirovannykh setkakh dlya raschetov na massivno-parallelnykh uskoritelyakh”, Zh. vychisl. matem. i matem. fiz., 53:8 (2013), 1360–1373 | MR | Zbl

[11] Barth T., Numerical methods for conservation laws on structured and unstructured meshes, VKI for Fluid Dynamics, Lectures series, 5, 2003

[12] Abalakin I. V., Kozubskaya T. K., “Skhema na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustiki na nestrukturirovannykh setkakh”, Matem. modelirovanie, 25:8 (2013), 109–136 | MR

[13] Bakhvalov P. A., “Skhema s kvaziodnomernoi rekonstruktsiei peremennykh na setkakh iz vypuklykh mnogougolnikov dlya resheniya zadach aeroakustiki”, Matem. modelirovanie, 25 (2013), 95–108 | MR

[14] Gorobets A., Trias F. X., Oliva A., “A parallel MPI+OpenMP+OpenCL algorithm for hybrid supercomputations of incompressible flows”, Computers and Fluids, 88 (2013), 764–772 | MR

[15] Soria M., Perez-Segarra C. D., Oliva A., “A direct parallel algorithm for the efficient solution of the pressure-for-reaction equation of incompressible flow problems using loosely coupled computers”, Numerical Heat Transfer. Part B, 41 (2002), 117–138

[16] Schloegel K., Karypis G., Kumar V., “Parallel static and dynamic multi-constraint graph partitioning”, Concurrency and Computation: Practice and Experience, 14:3 (2002), 219–240 | Zbl

[17] Pellegrini F., PT-Scotch and libPTScotch 6.0 User's Guide, , 2012 https://gforge.inria.fr/docman/view.php/248/8261/ptscotch_user6.0.pdf

[18] Golovchenko E. N., “Parallelnyi paket dekompozitsii bolshikh setok”, Matem. modelirovanie, 23:10 (2011), 3–18 | MR

[19] Krasnopolsky V., “The reordered BiCGStab method for distributed memory computer systems”, ICCS 2010, Procedia Computer Science, 1, no. 1, 2010, 213–218

[20] Gorobets A. V., Sukov S. A., Bogdanov P. B., “Na puti k osvoeniyu geterogennykh supervychislenii v gazovoi dinamike”, Informatsionnye tekhnologii i vychisl. sistemy, 2013, no. 4, 23–34

[21] Cuthill E., McKee J., “Reducing the bandwidth of sparse symmetric matrices”, ACM'69 Proc. of the 1969 24th national conference (1969), 157–172

[22] Gorobets A. V., Sukov S. A., Zheleznyakov A. O., Bogdanov P. B., Chetverushkin B. N., “Primenenie GPU v ramkakh gibridnogo dvukhurovnevogo rasparallelivaniya MPI+OpenMP na geterogennykh vychislitelnykh sistemakh”, Vestn. YuUrGU, 242:25 (2011), 76–86

[23] Monakov A., Lokhmotov A., Avetisyan A., “Automatically tuning sparse matrix-vector multiplication for GPU srchitectures”, High Performance Embedded Architectures and Compilers, Lecture Notes in Computer Sci., 5952, 2010, 111–125

[24] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben' A. P., Kozubskaya T. K., “Parallelnyi programmnyi kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychisl. metody i programmirovanie, 13 (2012), 110–125

[25] Oyarzun G., Borrell R., Gorobets A., Oliva A., “MPI-CUDA sparse matrix-vector multiplication for the conjugate gradient method with an approximate inverse preconditioner”, Comput. and Fluids (to appear) (4 November 2013) | DOI

[26] Trias F. X., Lehmkuhl O., Oliva A., Pérez-Segarra C. D., Verstappen R. W. C. P., “Symmetry-preserving discretization of Navier-Stokes equations on collocated mistractured grids”, J. Comput. Phys., 258:1 (2014), 246–267 | MR

[27] Verstappen R. W. C. P., Veldman A. E. J. P., “Symmetry-preserving discretization of turbulent flow”, J. Comput. Phys., 187 (2003), 343–368 | MR | Zbl

[28] Titarev V., Dumbser M., Utyuzhnikov S., “Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions”, J. Comput. Phys., 256 (2014), 17–33 | MR

[29] A Guide to Vectorization with Intel C++ Compilers, , 2012 http://download-software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf