Transformation of sine-Gordon solitons in models with variable coefficients and damping
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 631-640 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamics of sine-Gordon solitons in the presence of an external force, damping, and a spatially modulated periodic potential is studied. Numerical methods are used to show the possibility of generating localized nonlinear waves of the soliton and breather types. Their evolution is investigated, and the dependences of the amplitude and the oscillation frequency on the parameters of the system are found.
@article{ZVMMF_2015_55_4_a10,
     author = {A. M. Gumerov and E. G. Ekomasov and R. R. Murtazin and V. N. Nazarov},
     title = {Transformation of {sine-Gordon} solitons in models with variable coefficients and damping},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {631--640},
     year = {2015},
     volume = {55},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/}
}
TY  - JOUR
AU  - A. M. Gumerov
AU  - E. G. Ekomasov
AU  - R. R. Murtazin
AU  - V. N. Nazarov
TI  - Transformation of sine-Gordon solitons in models with variable coefficients and damping
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 631
EP  - 640
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/
LA  - ru
ID  - ZVMMF_2015_55_4_a10
ER  - 
%0 Journal Article
%A A. M. Gumerov
%A E. G. Ekomasov
%A R. R. Murtazin
%A V. N. Nazarov
%T Transformation of sine-Gordon solitons in models with variable coefficients and damping
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 631-640
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/
%G ru
%F ZVMMF_2015_55_4_a10
A. M. Gumerov; E. G. Ekomasov; R. R. Murtazin; V. N. Nazarov. Transformation of sine-Gordon solitons in models with variable coefficients and damping. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 631-640. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/

[1] Scott A. (ed.), Encyclopedia of nonlinear science, Routledge, New York, 2004 | MR

[2] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu. i dr., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009

[3] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008

[4] Dauxois T., Peyrard M., Physics of solitons, Cambridge University Press, New York, 2010 | Zbl

[5] Fogel M. B., Trullinger S. E., Bishop A. R., Krumhandl J. A., “Dynamics of sine-Gordon solitons in the presence of perturbations”, Phys. Rev. B, 15 (1977), 1578–1592 | MR

[6] Currie J. P., Trullinger S. E., Bishop A. R., Krumhandl J. A., “Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations”, Phys. Rev. B, 15:12 (1977), 5567–5580

[7] Goodman R. H., Holmes P. J., Weinstein M. I., “Interaction of sine-Gordon kinks with defects: Phase space transport in a two-mode model”, Physica D: Nonlinear Phenomena, 161:1 (2002), 21–44 | MR | Zbl

[8] González J. A., Bellorin A., Guerrero L. E., “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations”, Phys. Rev. E (Rapid Communications), 65 (2002), 065601 | MR

[9] Nazifkar S., Javidan K., “Collective coordinate analysis for double sine-Gordon model”, Brazilian J. Phys., 40:1 (2010), 102–107

[10] González J. A., Cuenda S., Sánchez A., “Kink dynamics in spatially inhomogeneous media: The role of internal modes”, Phys. Rev. E, 75 (2007), 036611 | MR

[11] Bratsos A. G., “The solution of the two-dimensional sine-Gordon equation using the method of lines”, J. Comput. Appl. Math., 206:1 (2007), 251–277 | MR | Zbl

[12] Fabian A. L., Kohl R., Biswas A., “Perturbation of topological solitons due to sine-Gordon equation and its type”, Commun. Nonlinear Sci. Numerical Simulation, 14:4 (2009), 1227–1244 | MR | Zbl

[13] Batiha B., Noorani M. S. M., Hashim I., “Numerical solution of sine-Gordon equation by variational iteration method”, Phys. Lett. A, 370:5 (2007), 437–440 | MR | Zbl

[14] Ablowitz M. J., Herbst B. M., Schober C. M., “On the Numerical Solution of the sine-Gordon Equation”, J. Comput. Phys., 131:2 (1997), 354–367 | MR | Zbl

[15] Paul D. I., “Soliton theory and the dynamics of a ferromagnetic domain wall”, J. Phys. C: Solid State Phys., 12 (1979), 585–593

[16] Knight C. J. K., Derks G., Doelman A., Susanto H., “Stability of stationary fronts in a nonlinear wave equation with spatial inhomogeneity”, J. Different. Equat., 254:2 (2013), 408–468 | MR | Zbl

[17] Piette B., Zakrzewski W. J., Brand J., “Scattering of topological solitons on holes and barriers”, J. Phys. A: Mathematical and General., 38:48 (2005), 10403–10412 | MR | Zbl

[18] Piette B., Zakrzewski W. J., “Scattering of sine-Gordon kinks on potential wells”, J. Physics A: Mathematical and Theoretical, 40 (2007), 5995–6010 | MR | Zbl

[19] Ekomasov E. G., Gumerov A. M., “Modelirovanie vzaimodeistviya nelineinykh voln v modeli sinus-Gordona dlya materialov s defektami”, Perspektivnye materialy, 2011, no. 12, 104–108

[20] Ekomasov E. G., Azamatov Sh. A., Murtazin R. R., “Izuchenie zarozhdeniya i evolyutsii magnitnykh neodnorodnostei tipa solitonov i brizerov v magnetikakh s lokalnymi neodnorodnostyami anizotropii”, Fiz. metallov i metallovedenie, 105:4 (2008), 341–349

[21] Ekomasov E. G., Gumerov A. M., Murtazin R. R. et al., Excitation of high-amplitude localized nonlinear waves as a result of interaction of kink with attractive impurity in sine-Gordon equation, 2013, arXiv: 1307.3470 [nlin.PS]

[22] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “Kollektivnoe vliyanie primesei na dinamiku kinkov modifitsirovannogo uravneniya sinus-Gordona”, Kompyuternye issledovaniya i modelirovanie, 5:3 (2013), 403–412

[23] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 481–495 | MR | Zbl

[24] Ekomasov E. G., Gumerov A. M., Rakhmatullin I. I., “Chislennoe modelirovanie pinninga i nelineinoi dinamiki domennykh granits v ferromagnetikakh s defektami”, Vestn. Bashkirskogo un-ta, 15:3 (2010), 564–566

[25] Goatham S. W., Mannering L. E., Hann R., Krusch S., “Dynamics of multi-kinks in the presence of wells and barriers”, Acta Physica Polonica B, 42:10 (2011), 2087–2106

[26] Popov S. P., “Vliyanie dislokatsii na kinkovye resheniya dvoinogo sinus-Gordona uravneniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 2072–2081 | Zbl

[27] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Almukhametova A. R., “Nelineinaya dinamika kinkov uravneniya sinus-Gordona pri nalichii lokalizovannoi prostranstvennoi modulyatsii parametrov sistemy”, Vestn. Bashkirskogo un-ta, 17:2 (2012), 847–852

[28] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater., 339 (2013), 133

[29] Mohebbi A., Dehghan M., “High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods”, Math. Comput. Modell., 51:5–6 (2010), 537–549 | MR | Zbl

[30] Van der Houwen P. J., Sommeijer B. P., Cong N. H., “Parallel diagonally implicit Runge–Kutta–Nystrom methods”, Appl. Numerical Math., 9:2 (1992), 111–131 | MR | Zbl

[31] Dehghan M., Shokri Ali, “Numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions”, Numerical Meth. for Partial Different. Equat., 24:2 (2008), 687–698 | MR | Zbl

[32] Bratsos A. G., Twizell E. H., “The solution of the sine-Gordon equation using the method of lines”, Intern. J. Comput. Math., 61:3–4 (1996), 271–292 | MR | Zbl

[33] Soori Zoleikh, Aminataei Azim, “The spectral method for solving sine-Gordon equation using a new orthogonal polynomial”, Appl. Math., 2012, 462731, 12 pp. | DOI | MR | Zbl

[34] Alfimov G. L., Evans W. A. B., Vázquez L., “On radial sine-Gordon breathers”, Nonlinearity, 13:5 (2000), 1657–1680 | MR | Zbl

[35] Popov S. P., “O primenenii kvazispektralnogo metoda Fure k solitonosoderzhaschim uravneniyam”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 1–8 | MR | Zbl

[36] Li-Min Ma, Zong-Min Wu, “A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation”, Chinese Physics B, 18:8 (2009), 3099

[37] Bratsos A. G., “A numerical method for the one-dimensional sine-Gordon equation”, Numer. Meth. Partial Differential Equat., 24:3 (2008), 833–844 | MR | Zbl

[38] Khaliq A. Q. M., Abukhodair B., Sheng Q., Ismail M. S., “A predictor-corrector scheme for the sine-Gordon equation”, Numer. Meth. Partial Differen. Equat., 16:2 (2000), 133–146 | MR | Zbl

[39] Akgul A., Inc M., Numerical solution of one-dimensional sine-Gordon equation using Reproducing Kernel Hilbert Space Method, 2013, arXiv: 1304.0534 [math.NA]

[40] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[41] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987, 600 pp. | MR

[42] Kunin S., Vychislitelnaya fizika, Mir, M., 1992, 518 pp.

[43] Ferreira L. A., Piette B., Zakrzewski W. J., “Wobbles and other kink-breather solutions of sine-Gordon model”, Phys. Rev. E, 77 (2008), 036616

[44] Kalberman G., “The sine-Gordon wobble”, J. Phys. A: Math. Gen., 37 (2004), 11603–11612 | MR | Zbl

[45] Kalmenov T. Sh., Suragan D., “Perenos uslovii izlucheniya Zommerfelda na granitsu ogranichennoi oblasti”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1063–1068 | Zbl

[46] Chang WenFong, McMechan G. A., “Absorbing boundary conditions for 3D acoustic and elastic finitedifference calculations”, Bulletin of the Seismological Society of America, 79:1 (1989), 211–218

[47] Engquist B., Majda A., “Radiation boundary conditions for acoustic and elastic wave calculations”, Commun. on Pure and Appl. Math., 32:3 (1979), 313–357 | MR | Zbl

[48] Konstantinov A. A., Maslov V. P., Chebotarev A. M., “Snos kraevykh uslovii dlya uravnenii s chastnymi proizvodnymi”, Zh. vychisl. matem. i matem. fiz., 28:12 (1988), 1763–1778 | MR | Zbl

[49] Higdon R. L., “Numerical absorbing boundary conditions for the wave equation”, Math. Comput., 49:179 (1987), 65–90 | MR | Zbl

[50] Shikhovtseva E. S., Nazarov V. N., “Vliyanie nelineinogo prodolnogo szhatiya na konformatsionnuyu dinamiku bistabilnykh kvaziodnomernykh makromolekul”, Pisma v zh. eksperimentalnoi i teor. fiz., 86:8 (2007), 569–573