@article{ZVMMF_2015_55_4_a10,
author = {A. M. Gumerov and E. G. Ekomasov and R. R. Murtazin and V. N. Nazarov},
title = {Transformation of {sine-Gordon} solitons in models with variable coefficients and damping},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {631--640},
year = {2015},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/}
}
TY - JOUR AU - A. M. Gumerov AU - E. G. Ekomasov AU - R. R. Murtazin AU - V. N. Nazarov TI - Transformation of sine-Gordon solitons in models with variable coefficients and damping JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 631 EP - 640 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/ LA - ru ID - ZVMMF_2015_55_4_a10 ER -
%0 Journal Article %A A. M. Gumerov %A E. G. Ekomasov %A R. R. Murtazin %A V. N. Nazarov %T Transformation of sine-Gordon solitons in models with variable coefficients and damping %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 631-640 %V 55 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/ %G ru %F ZVMMF_2015_55_4_a10
A. M. Gumerov; E. G. Ekomasov; R. R. Murtazin; V. N. Nazarov. Transformation of sine-Gordon solitons in models with variable coefficients and damping. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 631-640. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a10/
[1] Scott A. (ed.), Encyclopedia of nonlinear science, Routledge, New York, 2004 | MR
[2] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu. i dr., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009
[3] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008
[4] Dauxois T., Peyrard M., Physics of solitons, Cambridge University Press, New York, 2010 | Zbl
[5] Fogel M. B., Trullinger S. E., Bishop A. R., Krumhandl J. A., “Dynamics of sine-Gordon solitons in the presence of perturbations”, Phys. Rev. B, 15 (1977), 1578–1592 | MR
[6] Currie J. P., Trullinger S. E., Bishop A. R., Krumhandl J. A., “Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations”, Phys. Rev. B, 15:12 (1977), 5567–5580
[7] Goodman R. H., Holmes P. J., Weinstein M. I., “Interaction of sine-Gordon kinks with defects: Phase space transport in a two-mode model”, Physica D: Nonlinear Phenomena, 161:1 (2002), 21–44 | MR | Zbl
[8] González J. A., Bellorin A., Guerrero L. E., “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations”, Phys. Rev. E (Rapid Communications), 65 (2002), 065601 | MR
[9] Nazifkar S., Javidan K., “Collective coordinate analysis for double sine-Gordon model”, Brazilian J. Phys., 40:1 (2010), 102–107
[10] González J. A., Cuenda S., Sánchez A., “Kink dynamics in spatially inhomogeneous media: The role of internal modes”, Phys. Rev. E, 75 (2007), 036611 | MR
[11] Bratsos A. G., “The solution of the two-dimensional sine-Gordon equation using the method of lines”, J. Comput. Appl. Math., 206:1 (2007), 251–277 | MR | Zbl
[12] Fabian A. L., Kohl R., Biswas A., “Perturbation of topological solitons due to sine-Gordon equation and its type”, Commun. Nonlinear Sci. Numerical Simulation, 14:4 (2009), 1227–1244 | MR | Zbl
[13] Batiha B., Noorani M. S. M., Hashim I., “Numerical solution of sine-Gordon equation by variational iteration method”, Phys. Lett. A, 370:5 (2007), 437–440 | MR | Zbl
[14] Ablowitz M. J., Herbst B. M., Schober C. M., “On the Numerical Solution of the sine-Gordon Equation”, J. Comput. Phys., 131:2 (1997), 354–367 | MR | Zbl
[15] Paul D. I., “Soliton theory and the dynamics of a ferromagnetic domain wall”, J. Phys. C: Solid State Phys., 12 (1979), 585–593
[16] Knight C. J. K., Derks G., Doelman A., Susanto H., “Stability of stationary fronts in a nonlinear wave equation with spatial inhomogeneity”, J. Different. Equat., 254:2 (2013), 408–468 | MR | Zbl
[17] Piette B., Zakrzewski W. J., Brand J., “Scattering of topological solitons on holes and barriers”, J. Phys. A: Mathematical and General., 38:48 (2005), 10403–10412 | MR | Zbl
[18] Piette B., Zakrzewski W. J., “Scattering of sine-Gordon kinks on potential wells”, J. Physics A: Mathematical and Theoretical, 40 (2007), 5995–6010 | MR | Zbl
[19] Ekomasov E. G., Gumerov A. M., “Modelirovanie vzaimodeistviya nelineinykh voln v modeli sinus-Gordona dlya materialov s defektami”, Perspektivnye materialy, 2011, no. 12, 104–108
[20] Ekomasov E. G., Azamatov Sh. A., Murtazin R. R., “Izuchenie zarozhdeniya i evolyutsii magnitnykh neodnorodnostei tipa solitonov i brizerov v magnetikakh s lokalnymi neodnorodnostyami anizotropii”, Fiz. metallov i metallovedenie, 105:4 (2008), 341–349
[21] Ekomasov E. G., Gumerov A. M., Murtazin R. R. et al., Excitation of high-amplitude localized nonlinear waves as a result of interaction of kink with attractive impurity in sine-Gordon equation, 2013, arXiv: 1307.3470 [nlin.PS]
[22] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “Kollektivnoe vliyanie primesei na dinamiku kinkov modifitsirovannogo uravneniya sinus-Gordona”, Kompyuternye issledovaniya i modelirovanie, 5:3 (2013), 403–412
[23] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 481–495 | MR | Zbl
[24] Ekomasov E. G., Gumerov A. M., Rakhmatullin I. I., “Chislennoe modelirovanie pinninga i nelineinoi dinamiki domennykh granits v ferromagnetikakh s defektami”, Vestn. Bashkirskogo un-ta, 15:3 (2010), 564–566
[25] Goatham S. W., Mannering L. E., Hann R., Krusch S., “Dynamics of multi-kinks in the presence of wells and barriers”, Acta Physica Polonica B, 42:10 (2011), 2087–2106
[26] Popov S. P., “Vliyanie dislokatsii na kinkovye resheniya dvoinogo sinus-Gordona uravneniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 2072–2081 | Zbl
[27] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Almukhametova A. R., “Nelineinaya dinamika kinkov uravneniya sinus-Gordona pri nalichii lokalizovannoi prostranstvennoi modulyatsii parametrov sistemy”, Vestn. Bashkirskogo un-ta, 17:2 (2012), 847–852
[28] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater., 339 (2013), 133
[29] Mohebbi A., Dehghan M., “High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods”, Math. Comput. Modell., 51:5–6 (2010), 537–549 | MR | Zbl
[30] Van der Houwen P. J., Sommeijer B. P., Cong N. H., “Parallel diagonally implicit Runge–Kutta–Nystrom methods”, Appl. Numerical Math., 9:2 (1992), 111–131 | MR | Zbl
[31] Dehghan M., Shokri Ali, “Numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions”, Numerical Meth. for Partial Different. Equat., 24:2 (2008), 687–698 | MR | Zbl
[32] Bratsos A. G., Twizell E. H., “The solution of the sine-Gordon equation using the method of lines”, Intern. J. Comput. Math., 61:3–4 (1996), 271–292 | MR | Zbl
[33] Soori Zoleikh, Aminataei Azim, “The spectral method for solving sine-Gordon equation using a new orthogonal polynomial”, Appl. Math., 2012, 462731, 12 pp. | DOI | MR | Zbl
[34] Alfimov G. L., Evans W. A. B., Vázquez L., “On radial sine-Gordon breathers”, Nonlinearity, 13:5 (2000), 1657–1680 | MR | Zbl
[35] Popov S. P., “O primenenii kvazispektralnogo metoda Fure k solitonosoderzhaschim uravneniyam”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 1–8 | MR | Zbl
[36] Li-Min Ma, Zong-Min Wu, “A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation”, Chinese Physics B, 18:8 (2009), 3099
[37] Bratsos A. G., “A numerical method for the one-dimensional sine-Gordon equation”, Numer. Meth. Partial Differential Equat., 24:3 (2008), 833–844 | MR | Zbl
[38] Khaliq A. Q. M., Abukhodair B., Sheng Q., Ismail M. S., “A predictor-corrector scheme for the sine-Gordon equation”, Numer. Meth. Partial Differen. Equat., 16:2 (2000), 133–146 | MR | Zbl
[39] Akgul A., Inc M., Numerical solution of one-dimensional sine-Gordon equation using Reproducing Kernel Hilbert Space Method, 2013, arXiv: 1304.0534 [math.NA]
[40] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[41] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987, 600 pp. | MR
[42] Kunin S., Vychislitelnaya fizika, Mir, M., 1992, 518 pp.
[43] Ferreira L. A., Piette B., Zakrzewski W. J., “Wobbles and other kink-breather solutions of sine-Gordon model”, Phys. Rev. E, 77 (2008), 036616
[44] Kalberman G., “The sine-Gordon wobble”, J. Phys. A: Math. Gen., 37 (2004), 11603–11612 | MR | Zbl
[45] Kalmenov T. Sh., Suragan D., “Perenos uslovii izlucheniya Zommerfelda na granitsu ogranichennoi oblasti”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1063–1068 | Zbl
[46] Chang WenFong, McMechan G. A., “Absorbing boundary conditions for 3D acoustic and elastic finitedifference calculations”, Bulletin of the Seismological Society of America, 79:1 (1989), 211–218
[47] Engquist B., Majda A., “Radiation boundary conditions for acoustic and elastic wave calculations”, Commun. on Pure and Appl. Math., 32:3 (1979), 313–357 | MR | Zbl
[48] Konstantinov A. A., Maslov V. P., Chebotarev A. M., “Snos kraevykh uslovii dlya uravnenii s chastnymi proizvodnymi”, Zh. vychisl. matem. i matem. fiz., 28:12 (1988), 1763–1778 | MR | Zbl
[49] Higdon R. L., “Numerical absorbing boundary conditions for the wave equation”, Math. Comput., 49:179 (1987), 65–90 | MR | Zbl
[50] Shikhovtseva E. S., Nazarov V. N., “Vliyanie nelineinogo prodolnogo szhatiya na konformatsionnuyu dinamiku bistabilnykh kvaziodnomernykh makromolekul”, Pisma v zh. eksperimentalnoi i teor. fiz., 86:8 (2007), 569–573