A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 550-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A bilinear algorithm of bilinear complexity 22 for approximate multiplication of $2\times 7$ and $7\times 2$ matrices is presented. An upper bound is given for the bilinear complexity of approximate multiplication of $2\times 2$ and $2\times n$ matrices ($n\geqslant1$).
@article{ZVMMF_2015_55_4_a1,
     author = {A. V. Smirnov},
     title = {A bilinear algorithm of length~$22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {550--554},
     year = {2015},
     volume = {55},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 550
EP  - 554
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/
LA  - ru
ID  - ZVMMF_2015_55_4_a1
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 550-554
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/
%G ru
%F ZVMMF_2015_55_4_a1
A. V. Smirnov. A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 550-554. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/

[1] Shtrassen V., “Algoritm Gaussa ne optimalen”, v. 7, Kiberneticheskii sbornik, Mir, M., 1970, 67–70

[2] Coppersmith D., Winograd S., “Matrix multiplication via arithmetic progressions”, J. Symbolic Comput., 9 (1990), 251–280 | MR | Zbl

[3] Alekseev V. B., “Slozhnost umnozheniya matrits. Obzor”, Kiberneticheskii sb., 25, Mir, M., 1988, 189–236 | MR | Zbl

[4] Bini D., “Relations between exact and approximate bilinear algorithms. Applications”, Calcolo, 17 (1980), 87–97 | MR | Zbl

[5] Winograd S., “On multiplication of $2\times 2$ matrices”, Linear Algebra and Appl., 4 (1971), 381–388 | MR | Zbl

[6] Laderman J., “A noncommutative algorithm for multiplying $3\times 3$ matrices using 23 multiplications”, Bull. Amer. Math. Soc., 82:1 (1976), 126–128 | MR | Zbl

[7] Bläser M., “On the complexity of the multiplication of matrices of small formats”, J. Complexity, 19:1 (2003), 43–60 | MR | Zbl

[8] Schönhage A., “Partial and total matrix multiplication”, SIAM J. Comput., 10:3 (1981), 434–455 | MR | Zbl

[9] Smirnov A. V., “O bilineinoi slozhnosti i prakticheskikh algoritmakh umnozheniya matrits”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 1970–1984 | Zbl

[10] Bini D., Capovani M., Lotti G., Romani F., “$O(n^{2.7799})$ complexity for $n\times n$ approximate matrix multiplication”, Inform. Process. Lett., 8:5 (1979), 234–235 | MR | Zbl

[11] Alekseyev V. B., “On the complexity of some algorithms of matrix multiplication”, J. Algorithms, 6:1 (1985), 71–85 | MR | Zbl

[12] Alekseev V. B., Smirnov A. V., “O tochnoi i priblizhennoi bilineinykh slozhnostyakh umnozheniya matrits razmerov $4\times 2$ i $2\times 2$”, Matematika i informatika. 2, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovr. probl. matem., 17, MIAN, M., 2013, 135–152 | MR | Zbl

[13] Hopcroft J. E., Kerr L. R., “On minimizing the number of multiplications necessary for matrix multiplication”, SIAM J. Appl. Math., 20:1 (1971), 30–36 | MR | Zbl

[14] Hopcroft J. E., Musinski J., “Duality applied to the complexity of matrix multiplication and other bilinear forms”, SIAM J. Comput., 2:3 (1973), 159–173 | MR | Zbl

[15] Brent R. P., Algorithms for matrix multiplications, Computer Science Dept. Report. CS 157, Stanford University, 1970

[16] Trefilov A. P., “O priblizhennoi bilineinoi slozhnosti umnozheniya matrits”, Vestn. Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2014, no. 4, 39–41