@article{ZVMMF_2015_55_4_a1,
author = {A. V. Smirnov},
title = {A bilinear algorithm of length~$22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {550--554},
year = {2015},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/}
}
TY - JOUR AU - A. V. Smirnov TI - A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 550 EP - 554 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/ LA - ru ID - ZVMMF_2015_55_4_a1 ER -
%0 Journal Article %A A. V. Smirnov %T A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 550-554 %V 55 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/ %G ru %F ZVMMF_2015_55_4_a1
A. V. Smirnov. A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 550-554. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/
[1] Shtrassen V., “Algoritm Gaussa ne optimalen”, v. 7, Kiberneticheskii sbornik, Mir, M., 1970, 67–70
[2] Coppersmith D., Winograd S., “Matrix multiplication via arithmetic progressions”, J. Symbolic Comput., 9 (1990), 251–280 | MR | Zbl
[3] Alekseev V. B., “Slozhnost umnozheniya matrits. Obzor”, Kiberneticheskii sb., 25, Mir, M., 1988, 189–236 | MR | Zbl
[4] Bini D., “Relations between exact and approximate bilinear algorithms. Applications”, Calcolo, 17 (1980), 87–97 | MR | Zbl
[5] Winograd S., “On multiplication of $2\times 2$ matrices”, Linear Algebra and Appl., 4 (1971), 381–388 | MR | Zbl
[6] Laderman J., “A noncommutative algorithm for multiplying $3\times 3$ matrices using 23 multiplications”, Bull. Amer. Math. Soc., 82:1 (1976), 126–128 | MR | Zbl
[7] Bläser M., “On the complexity of the multiplication of matrices of small formats”, J. Complexity, 19:1 (2003), 43–60 | MR | Zbl
[8] Schönhage A., “Partial and total matrix multiplication”, SIAM J. Comput., 10:3 (1981), 434–455 | MR | Zbl
[9] Smirnov A. V., “O bilineinoi slozhnosti i prakticheskikh algoritmakh umnozheniya matrits”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 1970–1984 | Zbl
[10] Bini D., Capovani M., Lotti G., Romani F., “$O(n^{2.7799})$ complexity for $n\times n$ approximate matrix multiplication”, Inform. Process. Lett., 8:5 (1979), 234–235 | MR | Zbl
[11] Alekseyev V. B., “On the complexity of some algorithms of matrix multiplication”, J. Algorithms, 6:1 (1985), 71–85 | MR | Zbl
[12] Alekseev V. B., Smirnov A. V., “O tochnoi i priblizhennoi bilineinykh slozhnostyakh umnozheniya matrits razmerov $4\times 2$ i $2\times 2$”, Matematika i informatika. 2, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovr. probl. matem., 17, MIAN, M., 2013, 135–152 | MR | Zbl
[13] Hopcroft J. E., Kerr L. R., “On minimizing the number of multiplications necessary for matrix multiplication”, SIAM J. Appl. Math., 20:1 (1971), 30–36 | MR | Zbl
[14] Hopcroft J. E., Musinski J., “Duality applied to the complexity of matrix multiplication and other bilinear forms”, SIAM J. Comput., 2:3 (1973), 159–173 | MR | Zbl
[15] Brent R. P., Algorithms for matrix multiplications, Computer Science Dept. Report. CS 157, Stanford University, 1970
[16] Trefilov A. P., “O priblizhennoi bilineinoi slozhnosti umnozheniya matrits”, Vestn. Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2014, no. 4, 39–41