A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 550-554

Voir la notice de l'article provenant de la source Math-Net.Ru

A bilinear algorithm of bilinear complexity 22 for approximate multiplication of $2\times 7$ and $7\times 2$ matrices is presented. An upper bound is given for the bilinear complexity of approximate multiplication of $2\times 2$ and $2\times n$ matrices ($n\geqslant1$).
@article{ZVMMF_2015_55_4_a1,
     author = {A. V. Smirnov},
     title = {A bilinear algorithm of length~$22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {550--554},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 550
EP  - 554
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/
LA  - ru
ID  - ZVMMF_2015_55_4_a1
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 550-554
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/
%G ru
%F ZVMMF_2015_55_4_a1
A. V. Smirnov. A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 4, pp. 550-554. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_4_a1/