Asymptotic representation of the electromagnetic field of a dielectric waveguide near a corner point of the line of discontinuity of permittivity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 446-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior of the electromagnetic field of a waveguide near a corner point of a line of discontinuity of the permittivity is studied.
@article{ZVMMF_2015_55_3_a8,
     author = {A. N. Bogolyubov and I. E. Mogilevskii and A. G. Sveshnikov},
     title = {Asymptotic representation of the electromagnetic field of a dielectric waveguide near a corner point of the line of discontinuity of permittivity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {446--459},
     year = {2015},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a8/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - I. E. Mogilevskii
AU  - A. G. Sveshnikov
TI  - Asymptotic representation of the electromagnetic field of a dielectric waveguide near a corner point of the line of discontinuity of permittivity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 446
EP  - 459
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a8/
LA  - ru
ID  - ZVMMF_2015_55_3_a8
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A I. E. Mogilevskii
%A A. G. Sveshnikov
%T Asymptotic representation of the electromagnetic field of a dielectric waveguide near a corner point of the line of discontinuity of permittivity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 446-459
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a8/
%G ru
%F ZVMMF_2015_55_3_a8
A. N. Bogolyubov; I. E. Mogilevskii; A. G. Sveshnikov. Asymptotic representation of the electromagnetic field of a dielectric waveguide near a corner point of the line of discontinuity of permittivity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 446-459. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a8/

[1] Birman M. Sh., Solomyak M. Z., “$L_2$-teoriya operatora Maksvella v proizvolnykh oblastyakh”, Uspekhi matem. nauk, 42:6 (1987), 61–76 | MR | Zbl

[2] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[3] Bogolyubov A. N., Mogilevskii I. E., “Povedenie resheniya ellipticheskikh kraevykh zadach v okrestnosti uglovoi tochki linii razryva koeffitsientov”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2253–2259 | MR | Zbl

[4] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., “O matematicheskom obosnovanii variatsionno-raznostnogo podkhoda k chislennomu modelirovaniyu volnoveduschikh sistem”, Vestn. MGU. Ser. 3. Fiz., astron., 1998, no. 5, 14 | MR

[5] Kondpatev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tp. Mosk. Matem. Obschestva, 16, 1967, 227–313

[6] Kondratev V. A., “Osobennosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v okrestnosti rebra”, Differents. ur-niya, 13:11 (1977), 2026–2032 | MR | Zbl

[7] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., Sveshnikov A. G., “Problema vychisleniya volnovodnykh mod pri nalichii vkhodyaschikh reber”, Zh. radioelektroniki, 2001, no. 8 http://jre.cplire.ru/jre/aug01/8/text.html

[8] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., Sveshnikov A. G., “Osobennosti normalnykh voln neodnorodnogo volnovoda s vkhodyaschimi rebrami”, Radiotekhn. i elektronika, 48:7 (2003), 1–8 | MR

[9] Delitsyn A. L., “O probleme primeneniya metoda konechnykh elementov k zadache vychisleniya mod volnovodov”, Zh. vychisl. matem. i matem. fiz., 39:2 (1999), 315–322 | MR | Zbl