Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 435-445 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multisoliton solutions of the modified Korteweg–de Vries–sine-Gordon equation (mKdV-SG) are found numerically by applying the quasi-spectral Fourier method and the fourth-order Runge–Kutta method. The accuracy and features of the approach are determined as applied to problems with initial data in the form of various combinations of perturbed soliton distributions. Three-soliton solutions are obtained, and the generation of kinks, breathers, wobblers, perturbed kinks, and nonlinear oscillatory waves is studied.
@article{ZVMMF_2015_55_3_a7,
     author = {S. P. Popov},
     title = {Numerical analysis of soliton solutions of the modified {Korteweg{\textendash}de} {Vries{\textendash}sine-Gordon} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {435--445},
     year = {2015},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a7/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 435
EP  - 445
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a7/
LA  - ru
ID  - ZVMMF_2015_55_3_a7
ER  - 
%0 Journal Article
%A S. P. Popov
%T Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 435-445
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a7/
%G ru
%F ZVMMF_2015_55_3_a7
S. P. Popov. Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 435-445. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a7/

[1] Sayed S. M., “The Backlund transformation, exact solutions, and conservation laws for the compound modified Korteveg–de Vries-Sine-Gordon equations which describe pseudospherical surfaces”, J. Appl. Math., 2013 (2013), 613065 | MR | Zbl

[2] Khater A. H., Callebaut D. K., Sayed S. M., “Conservation laws for some nonlinear evolution equation which describe pseudo-spherical surfaces”, J. Geometry and Phys., 51:2 (2004), 332–352 | MR | Zbl

[3] Leblond H., Mihalache D., “Few-optical-cycle solitons: modified Korteveg–de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models”, Phys. Rev. A, 79 (2009), 063835

[4] Leblond H., Mihalache D., “Optical solitons in the few-cycle regime: recent theoretical results”, Romanian Reports in Physics, 63 (2011), 1254–1266

[5] Leblond H., Mihalache D., “Few-optical-cycle dissipative solitons”, J. Phys. A.: Math. Theor., 43:37 (2010), 375205–375222 | MR

[6] Chen D., Zhang D., Deng S., “The novel multi-soliton solutions of the MKdV-sine Gordon equations”, J. Phys. Soc. of Japan, 71:2 (2002), 658–659 | MR | Zbl

[7] Cox S. M., Matthews P. S., “Exponential time differencing for stiff systems”, J. Comp. Phys., 176:2 (2002), 430–455 | MR | Zbl

[8] Popov S. P., “O primenenii kvazispektralnogo metoda Fure k solitonosoderzhaschim uravneniyam”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2176–2183 | MR | Zbl

[9] Popov S. P., “Vozmuschennye solitonnye resheniya uravneniya sin-Gordona”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2182–2188 | MR

[10] Alejo M. A., Munos C., “On the nonlinear stability of mKdV breathers”, J. Phys. A.: Math. Theor., 45:43 (2012), 432001 | MR | Zbl

[11] Kalbermann G., “The sine-Gordon wobble”, J. Phys. A: Math. Gen., 37:48 (2004), 11603–11612 | MR | Zbl

[12] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 481–495 | Zbl

[13] Goatham S. W., Mannering L. E., Hann R., Krusch S., “Dynamics of multi-kinks in the presence of wells and barriers”, Acta Physica Polonica B, 42:10 (2011), 2087–2106

[14] Popov S. P., “Vliyanie dislokatsii na kinkovye resheniya dvoinogo sinus-Gordona uravneniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 2072–2081 | Zbl

[15] Piette B., Zakrzewski W. J., “Scattering of sine-Gordon breathers on a potential well”, Phys. Review E, 79 (2009), 046603 | MR

[16] Shamsutdinov M. A., Shamsutdinov D. M., Ekomasov E. G., “Dinamika domennykh stenok v ortorombicheskikh antiferromagnetikakh vblizi predelnoi skorosti”, Fizika metallov i metallovedenie, 96:4 (2003), 16–22

[17] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu. i dr., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009

[18] Sakovich A., Sakovich S., “Solitary wave solution of the short pulse equation”, J. Phys. A: Math. Gen., 39:22 (2006), L361–L367 | MR | Zbl