Leader in a diffusion competition model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 429-434

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional Cauchy problem is considered for a system of reaction-diffusion equations that, in the point version, generalizes the Volterra competition model. It is proved that the number of the leader in the propagation velocity of nonvanishing solution values at the periphery is independent of nonnegative finite initial distributions.
@article{ZVMMF_2015_55_3_a6,
     author = {V. N. Razzhevaikin},
     title = {Leader in a diffusion competition model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {429--434},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a6/}
}
TY  - JOUR
AU  - V. N. Razzhevaikin
TI  - Leader in a diffusion competition model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 429
EP  - 434
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a6/
LA  - ru
ID  - ZVMMF_2015_55_3_a6
ER  - 
%0 Journal Article
%A V. N. Razzhevaikin
%T Leader in a diffusion competition model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 429-434
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a6/
%G ru
%F ZVMMF_2015_55_3_a6
V. N. Razzhevaikin. Leader in a diffusion competition model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 429-434. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a6/