Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a numerical solution of the modified equal width wave (MEW) equation, has been obtained by a numerical technique based on Subdomain finite element method with quartic $\mathrm{B}$-splines. Test problems including the motion of a single solitary wave and interaction of two solitary waves are studied to validate the suggested method. Accuracy and efficiency of the proposed method are discussed by computing the numerical conserved laws and error norms $L_2$ and $L_\infty$. A linear stability analysis based on a Fourier method shows that the numerical scheme is unconditionally stable.
@article{ZVMMF_2015_55_3_a4,
     author = {T. Geyikli and S. B. G. Karakoc},
     title = {Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {417},
     year = {2015},
     volume = {55},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/}
}
TY  - JOUR
AU  - T. Geyikli
AU  - S. B. G. Karakoc
TI  - Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 417
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/
LA  - en
ID  - ZVMMF_2015_55_3_a4
ER  - 
%0 Journal Article
%A T. Geyikli
%A S. B. G. Karakoc
%T Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 417
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/
%G en
%F ZVMMF_2015_55_3_a4
T. Geyikli; S. B. G. Karakoc. Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/

[1] T. B. Benjamin, J. L. Bona, J. L. Mahoney, “Model equations for long waves in nonlinear dispersive media”, Philos. Trans. R. Soc. London Ser. A, 272:1220 (1972), 47–78 | MR | Zbl

[2] Kh. O. Abdulloev, H. Bogolubsky, V. G. Makhankov, “One more example of inelastic soliton interaction”, Phys. Lett. A, 56:6 (1967), 427–438 | MR

[3] L. R. T. Gardner, G. A. Gardner, T. Geyikli, “The boundary forced MKdV equation”, J. Comput. Phys., 113:1 (1994), 5–12 | MR | Zbl

[4] D. H. Peregrine, “Calculations of the development of an undular bore”, J. Fluid Mech., 25:2 (1996), 321–330

[5] A. M. Wazwaz, “The tanh and sine-cosine methods for a reliable treatment of the modified equal width equation and its variants”, Commun. Nonlinear Sci. Numer. Simul., 11:2 (2006), 148–160 | MR | Zbl

[6] S. I. Zaki, “Solitary wave interactions for the modified equal width equation”, Comput. Phys. Commun., 126:3 (2000), 219–231 | MR | Zbl

[7] S. I. Zaki, “A least-squares finite element scheme for the EW equation”, Comput. Methods Appl. Mech. Eng., 189:2 (2000), 587–594 | Zbl

[8] J. Lu, “He's variational method for the modified equal width wave equation”, Chaos Solitons Fractals, 39:5 (2007), 2102–2109

[9] S. T. Mohyud-Din, A. Yildirim, M. E. Berberler, M. M. Hosseini, “Numerical solution of modified equal width wave equation”, World Appl. Sci. J., 8:7 (2010), 792–798

[10] A. Esen, “A numerical solution of the equal width wave equation by a lumped Galerkin method”, Appl. Math. Comput., 68:1 (2004), 270–282 | MR

[11] A. Esen, “A lumped Galerkin method for the numerical solution of the modified equal width wave equation using quadratic B-splines”, Int. J. Comput. Math., 83:5–6 (2006), 449–459 | MR | Zbl

[12] A. Esen, S. Kutluay, “Solitary wave solutions of the modified equal width wave equation”, Commun. Nonlinear Sci. Numer. Simul., 13:3 (2008), 1538–1546 | MR | Zbl

[13] B. Saka, “Algorithms for numerical solution of the modified equal width wave equation using collocation method”, Math. Comput. Model., 45:9–10 (2007), 1096–1117 | MR | Zbl

[14] T. Geyikli, S. B. G. Karakoç, “Different applications for the MEW equation using septic B-spline collocation method”, Appl. Math., 2:6 (2011), 739–749 | MR

[15] T. Geyikli, S. B. G. Karakoç, “Petrov–Galerkin method with cubic B-splines for solving the MEW equation”, Bull. Belgian Math. Soc., 19:2 (2012), 215–227 | MR | Zbl

[16] S. B. G. Karakoç, Numerical solutions of the modified equal width wave equation with finite elements method, Ph. D. Thesis, Inonu University, December, 2011

[17] D. J. Evans, K. R. Raslan, “Solitary waves for the generalized equal width (GEW) equation”, Int. J. Comput. Math., 82:4 (2005), 445–455 | MR | Zbl

[18] R. M. Prenter, Splines and Variational Methods, Wiley, New York, 1975 | MR | Zbl

[19] L. R. T. Gardner, G. A. Gardner, F. A. Ayoup, N. K. Amein, “Simulations of the EW undular bore”, Commun. Numer. Eng., 13:7 (1997), 583–592 | Zbl

[20] P. J. Olver, “Euler operators and conservation laws of the BBM equation”, Math. Proc. Cambridge Philos. Soc., 85:1 (1979), 143–160 | MR | Zbl