@article{ZVMMF_2015_55_3_a4,
author = {T. Geyikli and S. B. G. Karakoc},
title = {Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {417},
year = {2015},
volume = {55},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/}
}
TY - JOUR
AU - T. Geyikli
AU - S. B. G. Karakoc
TI - Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2015
SP - 417
VL - 55
IS - 3
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/
LA - en
ID - ZVMMF_2015_55_3_a4
ER -
%0 Journal Article
%A T. Geyikli
%A S. B. G. Karakoc
%T Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 417
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/
%G en
%F ZVMMF_2015_55_3_a4
T. Geyikli; S. B. G. Karakoc. Subdomain finite element method with quartic $\mathrm{B}$-splines for the modified equal width wave equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a4/
[1] T. B. Benjamin, J. L. Bona, J. L. Mahoney, “Model equations for long waves in nonlinear dispersive media”, Philos. Trans. R. Soc. London Ser. A, 272:1220 (1972), 47–78 | MR | Zbl
[2] Kh. O. Abdulloev, H. Bogolubsky, V. G. Makhankov, “One more example of inelastic soliton interaction”, Phys. Lett. A, 56:6 (1967), 427–438 | MR
[3] L. R. T. Gardner, G. A. Gardner, T. Geyikli, “The boundary forced MKdV equation”, J. Comput. Phys., 113:1 (1994), 5–12 | MR | Zbl
[4] D. H. Peregrine, “Calculations of the development of an undular bore”, J. Fluid Mech., 25:2 (1996), 321–330
[5] A. M. Wazwaz, “The tanh and sine-cosine methods for a reliable treatment of the modified equal width equation and its variants”, Commun. Nonlinear Sci. Numer. Simul., 11:2 (2006), 148–160 | MR | Zbl
[6] S. I. Zaki, “Solitary wave interactions for the modified equal width equation”, Comput. Phys. Commun., 126:3 (2000), 219–231 | MR | Zbl
[7] S. I. Zaki, “A least-squares finite element scheme for the EW equation”, Comput. Methods Appl. Mech. Eng., 189:2 (2000), 587–594 | Zbl
[8] J. Lu, “He's variational method for the modified equal width wave equation”, Chaos Solitons Fractals, 39:5 (2007), 2102–2109
[9] S. T. Mohyud-Din, A. Yildirim, M. E. Berberler, M. M. Hosseini, “Numerical solution of modified equal width wave equation”, World Appl. Sci. J., 8:7 (2010), 792–798
[10] A. Esen, “A numerical solution of the equal width wave equation by a lumped Galerkin method”, Appl. Math. Comput., 68:1 (2004), 270–282 | MR
[11] A. Esen, “A lumped Galerkin method for the numerical solution of the modified equal width wave equation using quadratic B-splines”, Int. J. Comput. Math., 83:5–6 (2006), 449–459 | MR | Zbl
[12] A. Esen, S. Kutluay, “Solitary wave solutions of the modified equal width wave equation”, Commun. Nonlinear Sci. Numer. Simul., 13:3 (2008), 1538–1546 | MR | Zbl
[13] B. Saka, “Algorithms for numerical solution of the modified equal width wave equation using collocation method”, Math. Comput. Model., 45:9–10 (2007), 1096–1117 | MR | Zbl
[14] T. Geyikli, S. B. G. Karakoç, “Different applications for the MEW equation using septic B-spline collocation method”, Appl. Math., 2:6 (2011), 739–749 | MR
[15] T. Geyikli, S. B. G. Karakoç, “Petrov–Galerkin method with cubic B-splines for solving the MEW equation”, Bull. Belgian Math. Soc., 19:2 (2012), 215–227 | MR | Zbl
[16] S. B. G. Karakoç, Numerical solutions of the modified equal width wave equation with finite elements method, Ph. D. Thesis, Inonu University, December, 2011
[17] D. J. Evans, K. R. Raslan, “Solitary waves for the generalized equal width (GEW) equation”, Int. J. Comput. Math., 82:4 (2005), 445–455 | MR | Zbl
[18] R. M. Prenter, Splines and Variational Methods, Wiley, New York, 1975 | MR | Zbl
[19] L. R. T. Gardner, G. A. Gardner, F. A. Ayoup, N. K. Amein, “Simulations of the EW undular bore”, Commun. Numer. Eng., 13:7 (1997), 583–592 | Zbl
[20] P. J. Olver, “Euler operators and conservation laws of the BBM equation”, Math. Proc. Cambridge Philos. Soc., 85:1 (1979), 143–160 | MR | Zbl