A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 393-416
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              An initial-boundary value problem is considered for a singularly perturbed parabolic reaction-diffusion equation. For this problem, a technique is developed for constructing higher order accurate difference schemes that converge $\varepsilon$-uniformly in the maximum norm (where $\varepsilon$ is the perturbation parameter multiplying the highest order derivative, $\varepsilon\in(0, 1]$). A solution decomposition scheme is described in which the grid subproblems for the regular and singular solution components are considered on uniform meshes. The Richardson technique is used to construct a higher order accurate solution decomposition scheme whose solution converges $\varepsilon$-uniformly in the maximum norm at a rate of $\mathcal{O}(N^{-4}\ln^4N+N_0^{-2})$, where $N+1$ and $N_0+1$ are the numbers of nodes in uniform meshes in $a$ and $t$, respectively. Also, a new numerical-analytical Richardson scheme for the solution decomposition method is developed. Relying on the approach proposed, improved difference schemes can be constructed by applying the solution decomposition method and the Richardson extrapolation method when the number of embedded grids is more than two. These schemes converge $\varepsilon$-uniformly with an order close to the sixth in $x$ and equal to the third in $t$.
            
            
            
          
        
      @article{ZVMMF_2015_55_3_a3,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {393--416},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/}
}
                      
                      
                    TY - JOUR AU - G. I. Shishkin AU - L. P. Shishkina TI - A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 393 EP - 416 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/ LA - ru ID - ZVMMF_2015_55_3_a3 ER -
%0 Journal Article %A G. I. Shishkin %A L. P. Shishkina %T A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 393-416 %V 55 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/ %G ru %F ZVMMF_2015_55_3_a3
G. I. Shishkin; L. P. Shishkina. A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 393-416. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/
