A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 393-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-boundary value problem is considered for a singularly perturbed parabolic reaction-diffusion equation. For this problem, a technique is developed for constructing higher order accurate difference schemes that converge $\varepsilon$-uniformly in the maximum norm (where $\varepsilon$ is the perturbation parameter multiplying the highest order derivative, $\varepsilon\in(0, 1]$). A solution decomposition scheme is described in which the grid subproblems for the regular and singular solution components are considered on uniform meshes. The Richardson technique is used to construct a higher order accurate solution decomposition scheme whose solution converges $\varepsilon$-uniformly in the maximum norm at a rate of $\mathcal{O}(N^{-4}\ln^4N+N_0^{-2})$, where $N+1$ and $N_0+1$ are the numbers of nodes in uniform meshes in $a$ and $t$, respectively. Also, a new numerical-analytical Richardson scheme for the solution decomposition method is developed. Relying on the approach proposed, improved difference schemes can be constructed by applying the solution decomposition method and the Richardson extrapolation method when the number of embedded grids is more than two. These schemes converge $\varepsilon$-uniformly with an order close to the sixth in $x$ and equal to the third in $t$.
@article{ZVMMF_2015_55_3_a3,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {393--416},
     year = {2015},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 393
EP  - 416
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/
LA  - ru
ID  - ZVMMF_2015_55_3_a3
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 393-416
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/
%G ru
%F ZVMMF_2015_55_3_a3
G. I. Shishkin; L. P. Shishkina. A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 393-416. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a3/

[1] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[2] Khemker P. V., Shishkin G. I., Shishkina L. P., “Dekompozitsiya metoda Richardsona vysokogo poryadka tochnosti dlya singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 329–337 | MR | Zbl

[3] Shishkina L. P., “The Richardson method of high-order accuracy in $t$ for a semilinear singularly perturbed parabolic reaction-diffusion equation on a strip”, Proc. Internat. Conference on Computat. Math., ICCM/2004 (Novosibirsk, June 2004), v. II, ICM Publisher, Novosibirsk, 2004, 927–931

[4] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. ur-niya, 41:7 (2005), 980–989 | MR | Zbl

[5] Shishkin G. I., “Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems”, Math. Modelling and Analysis, 10:4 (2005), 393–412 | MR | Zbl

[6] Shishkin G. I., “Metod Richardsona povysheniya tochnosti reshenii singulyarno vozmuschennykh ellipticheskikh uravnenii s konvektsiei”, Izv. vyssh. uchebn. zavedenii. Matem., 2006, no. 2, 57–71 | MR

[7] Shishkin G. I., “Skhema Richardsona dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii s razryvnym nachalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1416–1436 | MR | Zbl

[8] Shishkin G. I., Shishkina L. P., “Skhema Richardsona povyshennogo poryadka tochnosti dlya semilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 50:3 (2010), 458–478 | MR | Zbl

[9] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Ser. Monographs Surveys in Pure Applied Math., Chapman and Hall/CRC, 2009 | MR | Zbl

[10] Shishkin G. I., Shishkina L. P., “Uluchshennaya raznostnaya skhema metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo (obyknovennogo differentsialnogo) uravneniya reaktsii-diffuzii”, Tr. IMM UrO RAN, 16, no. 1, 2010, 255–271 | Zbl

[11] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248 | MR | Zbl

[12] Allen D. N., Southwell R. V., “Relaxation methods applied to determine the motion, in two dimensions, of viscous fluid past a fixed cylinder”, Quart. J. Mech. Appl. Math., 8:2 (1955), 129–145 | MR | Zbl

[13] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | MR | Zbl

[14] Miller J. J. H., O'Riordan E., “Necessity of fitted operators and Shishkin meshes for resolving thin layer phenomena”, CWI Quarterly, 10:3/4 (1997), 207–213 | MR | Zbl

[15] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR

[16] Shishkin G. I., “Difference scheme of the solution decomposition method for a singularly perturbed parabolic reaction-diffusion equation”, Russian J. Numer. Anal. and Math. Modelling, 25:3 (2010), 261–278 | MR | Zbl

[17] Shishkin G. I., Shishkina L. P., “Skhema Richardsona metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2113–2133 | MR | Zbl

[18] Schlichting H., Boundary layer theory, McGraw-Hill, New York, 1979 | MR | Zbl

[19] Shishkin G. I., Shishkina L. P., “Uluchshennye approksimatsii resheniya i proizvodnykh singulyarno vozmuschennogo uravneniya reaktsii-diffuzii na osnove metoda dekompozitsii resheniya”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1091–1120 | MR | Zbl

[20] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[21] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001

[22] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya Bazovykh Znanii, M., 2001

[23] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[24] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR