Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 385-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of linear ordinary differential equations is examined on an infinite or semi-infinite interval. The basic conditions are nonlocal and are specified by a Stieltjes integral; moreover, certain redundant (and also nonlocal) conditions are imposed. At infinity, the solution is required to be bounded. A method for solving such an over-determined problem is proposed and analyzed. The method is numerically stable if an auxiliary problem that replaces the original one is numerically stable.
@article{ZVMMF_2015_55_3_a2,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {385--392},
     year = {2015},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a2/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 385
EP  - 392
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a2/
LA  - ru
ID  - ZVMMF_2015_55_3_a2
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 385-392
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a2/
%G ru
%F ZVMMF_2015_55_3_a2
A. A. Abramov; L. F. Yukhno. Solving a singular nonlocal problem with redundant conditions for a system of linear ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 385-392. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a2/

[1] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sovjet. J. Numer. Analys. Math. Modelling, 1:4 (1986), 245–265 | MR | Zbl

[2] Dzhangirova S. A., “O mnogotochechnykh zadachakh dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 27:9 (1987), 1375–1380 | MR

[3] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Nelokalnaya zadacha dlya singulyarnoi lineinoi sistemy obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1228–1235 | MR | Zbl

[4] Abramov A. A., Yukhno L. F., “Reshenie sistemy lineinykh obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 585–590 | Zbl

[5] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 342–345

[6] Abramov A. A., “O chislennoi ustoichivosti odnogo metoda perenosa granichnykh uslovii”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 401–406 | MR | Zbl

[7] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya gamiltonovoi sistemy differentsialnykh uravnenii s izbytochnymi usloviyami”, Differents. ur-niya, 50:7 (2014), 877–883 | Zbl