@article{ZVMMF_2015_55_3_a15,
author = {A. A. Dokukin and O. V. Senko},
title = {Regression model based on convex combinations best correlated with response},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {530--544},
year = {2015},
volume = {55},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a15/}
}
TY - JOUR AU - A. A. Dokukin AU - O. V. Senko TI - Regression model based on convex combinations best correlated with response JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 530 EP - 544 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a15/ LA - ru ID - ZVMMF_2015_55_3_a15 ER -
%0 Journal Article %A A. A. Dokukin %A O. V. Senko %T Regression model based on convex combinations best correlated with response %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 530-544 %V 55 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a15/ %G ru %F ZVMMF_2015_55_3_a15
A. A. Dokukin; O. V. Senko. Regression model based on convex combinations best correlated with response. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 530-544. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a15/
[1] Tibshirani R., “Regression shrinkage and selection via the lasso”, J. Roy. Stat. Soc., 58 (1996), 267–288 | MR | Zbl
[2] Zou H., Hastie T., Efron B., Hastie T., “Regularization and variable selection via the elastic net”, J. Roy. Stat. Soc., 67:2 (2005), 301–320 | MR | Zbl
[3] Efron B., Hastie T., Jonnstone I., Tibshirani R., “Least angle regression”, Annals of Statistics, 32:2 (2004), 407–499 | MR | Zbl
[4] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, Fazis, M., 2006
[5] Kuznetsov V. A., Senko O. V. et al., “Recognition of fuzzy systems by method of statistically weighed syndromes and its using for immunological and hematological norm and chronic pathology”, Chemical Physics, 15:1 (1996), 81–100
[6] Breiman L., Random forests — random features, Technical 567, , Statistics department. University of California, Berkley, September, 1999 http://www.boosting.org
[7] Kuncheva L. I., Combining pattern classifiers. Methods and algorithms, Wiley Interscience, New Jersey, 2004 | MR | Zbl
[8] Zhuravlev Yu. I., Kuznetsova A. V., Ryazanov V. V., Senko O. V., Botvin M. A., “The use of pattern recognition methods in tasks of biomedical diagnostics and forecasting”, Pattern Recognition and Image Analysis, 18:2 (2008), 195–200 | MR
[9] Brown G., Wyatt J. L., Tino P., “Managing diversity in regression ensembles”, J. Machine Learning Research, 6 (2005), 1621–1650 | MR | Zbl
[10] Senko O. V., “An optimal ensemble of predictors in convex correcting procedures”, Pattern Recognition and Image Analysis, 19:3 (2009), 465–468
[11] Senko O., Dokukin A., “Optimal forecasting based on convex correcting procedures”, New Trends in Classification and Data Mining, ITHEA, Sofia, 2010, 62–72
[12] Dokukin A. A., Senko O. V., “Optimalnye vypuklye korrektiruyuschie protsedury v zadachakh vysokoi razmernosti”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1751–1760 | MR | Zbl
[13] Senko O., Dokukin A., “Correlation maximization in regression models based on convex combinations”, Information Theories and Applications, 18:3 (2011), 224–231
[14] Friedman J. H., Hastie T., Tibshirani R., “Regularization paths for generalized linear models via coordinate descent”, J. Statistical Software, 33:1 (2010), 1–22