Bifurcation model of the laminar-turbulent transition in simple flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 523-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For plane channel flows with a constant pressure gradient and for constant-pressure shear layer flows, a simple closure scheme for the Reynolds-averaged Navier–Stokes equations is proposed as an alternative to eddy-viscosity-based models. The closure scheme makes it possible to compute flows at any Reynolds number, including near the laminar-turbulent transition.
@article{ZVMMF_2015_55_3_a14,
     author = {I. V. Eriklintsev and S. A. Kozlov},
     title = {Bifurcation model of the laminar-turbulent transition in simple flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {523--529},
     year = {2015},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a14/}
}
TY  - JOUR
AU  - I. V. Eriklintsev
AU  - S. A. Kozlov
TI  - Bifurcation model of the laminar-turbulent transition in simple flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 523
EP  - 529
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a14/
LA  - ru
ID  - ZVMMF_2015_55_3_a14
ER  - 
%0 Journal Article
%A I. V. Eriklintsev
%A S. A. Kozlov
%T Bifurcation model of the laminar-turbulent transition in simple flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 523-529
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a14/
%G ru
%F ZVMMF_2015_55_3_a14
I. V. Eriklintsev; S. A. Kozlov. Bifurcation model of the laminar-turbulent transition in simple flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 523-529. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a14/

[1] Frost U., Moulden T., Turbulentnost. Printsipy i primeneniya, Mir, M., 1980

[2] Belotserkovskii O. M., “Pryamoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1856–1882 | MR | Zbl

[3] Zubarev D. N., Morozov V. G., Troshkin O. V., “Turbulentnost kak neravnovesnyi fazovyi perekhod”, Teoret. i matem. fiz., 92:2 (1992), 293–311 | MR | Zbl

[4] Hanjalic K., Launder B. E., “Fully developed asymmetric flow in a plane channel”, J. Fluid Mech., 16 (1972), 1119–1130

[5] Nevzglyadov V. G., “K femenologicheskoi teorii turbulentnosti”, Dokl. AN SSSR, 47:3 (1945), 169–173

[6] Dryden H. L., “Recent advances in the mechanics of boundary layer flow”, Advances in Applied Mechanics, v. 1, Academic Press, N.-Y., 1948, 1–40 | MR

[7] Lee S. C., Harsha P. T., “Use of turbulent kinetic energy in free mixing studies”, AIAA Journal, 8 (1970), 1026–1032

[8] Reichardt H., “Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen”, J. Appl. Math. and Mech., 31 (1951), 208–219 | Zbl

[9] Klimontovich Yu. L., Engel-Kherbert Kh., “Osrednennye statsionarnye turbulentnye techeniya Kuetta i Puazeilya v neszhimaemoi zhidkosti”, Zh. teoret. fiz., 543:3 (1984), 440–449

[10] Patel V. C., Head M. R., “Some observations on skin friction and velocity profiles in fully developed pipe and channel flows”, J. Fluid Mech., 38:1 (1969), 181–201

[11] Kont-Bello Zh., Turbulentnoe techenie v kanale s parallelnymi stenkami, Mir, M., 1968

[12] Reichardt H., “Uber die Geschwindigkeitsverteilung in einer geradlinigen Couettestromung”, J. Appl. Math. and Mech., 36 (1956), 26–29

[13] Kuzminov A. V., Lapin B. H., Chernyi S. G., “Metod rascheta turbulentnykh techenii neszhimaemoi zhidkosti na osnove dvukhsloinoi $(k-\varepsilon)$-modeli”, Vychisl. tekhnologii, 6:5 (2001), 73–86

[14] Lapin Yu. V., Garbaruk A. V., Strelets M. Kh., “Algebraicheskie modeli turbulentnosti dlya pristennykh kanonicheskikh techenii”, Nauchno-tekhnicheskie vedomosti, 2004