Numerical simulation of gas flows through a cubic pack of nonspherical particles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 488-501
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method is proposed for computing flow variables in an enclosed domain with arbitrarily shaped particles. A technique for achieving an optimal load distribution in parallel computations is described. The gas flow through a cubic pack of nonspherical particles of given shape is computed.
@article{ZVMMF_2015_55_3_a11,
     author = {A. N. Semakin},
     title = {Numerical simulation of gas flows through a cubic pack of nonspherical particles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {488--501},
     year = {2015},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a11/}
}
TY  - JOUR
AU  - A. N. Semakin
TI  - Numerical simulation of gas flows through a cubic pack of nonspherical particles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 488
EP  - 501
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a11/
LA  - ru
ID  - ZVMMF_2015_55_3_a11
ER  - 
%0 Journal Article
%A A. N. Semakin
%T Numerical simulation of gas flows through a cubic pack of nonspherical particles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 488-501
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a11/
%G ru
%F ZVMMF_2015_55_3_a11
A. N. Semakin. Numerical simulation of gas flows through a cubic pack of nonspherical particles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 3, pp. 488-501. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_3_a11/

[1] Mujeebu M. A., Abdullah M. Z., Abu Bakar M. Z., Mohamad A. A., Abdullah M. K., “Applications of porous media combustion technology — A review”, Applied Energy, 86:9 (2009), 1365–1375

[2] Chen Y.-S., Hsiau S.-S., Lai S.-C., Chyou Y.-P., Li H.-Y., Hsu C.-J., “Filtration of dust particulates with a moving granular bed filter”, J. Hazardous Materials, 171:1–3 (2009), 987–994

[3] Li L., Ma W., “Experimental study on the effective particle diameter of a packed bed with non-spherical particles”, Transport in Porous Media, 89:1 (2011), 35–48

[4] Jamialahmadi M., Muller-Steinhagen H., Izadpanah M. R., “Pressure drop, gas hold-up and heat transfer during single and two-phase flow through porous media”, Internat. J. Heat and Fluid Flow, 26:1 (2005), 156–172

[5] Guardo A., Coussirat M., Larrayoz M. A., Recasens F., Egusquiza E., “Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds”, Chemical Eng. Sci., 60:6 (2005), 1733–1742

[6] Mujeebu M. A., Abdullah M. Z., Mohamad A. A., Abu Bakar M. Z., “Trends in modeling of porous media combustion”, Progress in Energy and Combustion Sci., 36:6 (2010), 627–650

[7] Brenner G., Pickenacker K., Pickenacker O., Trimis D., Wawrzinek K., Weber T., “Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media”, Combustion and Flame, 123:1–2 (2000), 201–213

[8] Sahraoui M., Kaviany M., “Direct simulation versus volume-averaged treatment of adiabatic, premixed flame in a porous medium”, Internat. J. Heat and Mass Transfer, 37:18 (1994), 2817–2834 | Zbl

[9] Caulkin R., Jia X., Fairweather M., Williams R. A., “Lattice approaches to packed column simulations”, Particuology, 6:6 (2008), 404–411

[10] Dixon A. G., Nijemeisland M., Stitt E. H., “Packed tubular reactor modeling and catalyst design using computational fluid dynamics”, Advances in Chemical Engng., 31 (2006), 307–389

[11] Freund H., Zeiser T., Huber F., Klemm E., Brenner G., Durst F., Emig G., “Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation”, Chemical Engng Sci., 58:3 (2003), 903–910

[12] Steger J. L., Benek J. A., “On the use of composite grid schemes in computational aerodynamics”, Comput. Meth. Applied Mech. Eng., 64 (1987), 301–320 | MR | Zbl

[13] Tang H. S., Jones S. C., Sotiropoulos F., “An overset-grid method for 3D unsteady incompressible flows”, J. Comput. Phys., 191:2 (2003), 567–600 | Zbl

[14] Ahusborde E., Glockner S., “An implicit method for the Navier–Stokes equations on overlapping block-structured grids”, Internat. J. Numerical Meth. Fluids, 62:7 (2010), 784–801 | MR | Zbl

[15] Ge L., Jones S. C., Sotiropoulos F., Healy T. M., Yoganathan A. P., “Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry”, J. Biomech. Eng., 125:5 (2003), 709–718

[16] Li Y., Paik K.-J., Xing T., Carrica P. M., “Dynamic overset CFD simulations of wind turbine aerodynamics”, Renewable Energy, 37:1 (2012), 285–298 | MR

[17] Fedorchenko A. T., “Chislennoe issledovanie nestatsionarnykh dozvukovykh techenii vyazkogo gaza vo vnezapno rasshiryayuschemsya ploskom kanale”, Mekhan. zhidkosti i gaza, 1988, no. 4, 32–41

[18] Lipanov A. M., “Metod chislennogo resheniya uravnenii gidromekhaniki v mnogosvyaznykh oblastyakh (pervoe soobschenie)”, Matem. modelirovanie, 18:12 (2006), 3–18

[19] Rusyak I. G., Gorokhov M. M., Kolosov S. M., “Postanovka zadachi prostranstvennogo techeniya neszhimaemoi zhidkosti v krivolineinykh koordinatakh”, Intellektualnye sistemy v proizvodstve, 2006, no. 1, 68–93 | MR

[20] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002, 840 pp.

[21] Li D., Sun X., Nonlinear integer programming, Springer, New-York, 2006 | MR | Zbl

[22] Holzer A., Sommerfeld M., “New simple correlation formula for the drag coefficient of non-spherical particles”, Powder Tech., 184:3 (2008), 361–365