@article{ZVMMF_2015_55_2_a9,
author = {A. P. Chugainova and V. A. Shargatov},
title = {Stability of nonstationary solutions of the generalized {KdV-Burgers} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {253--266},
year = {2015},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a9/}
}
TY - JOUR AU - A. P. Chugainova AU - V. A. Shargatov TI - Stability of nonstationary solutions of the generalized KdV-Burgers equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 253 EP - 266 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a9/ LA - ru ID - ZVMMF_2015_55_2_a9 ER -
%0 Journal Article %A A. P. Chugainova %A V. A. Shargatov %T Stability of nonstationary solutions of the generalized KdV-Burgers equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 253-266 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a9/ %G ru %F ZVMMF_2015_55_2_a9
A. P. Chugainova; V. A. Shargatov. Stability of nonstationary solutions of the generalized KdV-Burgers equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 253-266. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a9/
[1] Gelfand I. M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, Uspekhi matem. nauk, 14:2(86) (1959), 87–158
[2] Godunov S. K., “O needinstvennosti “razmazyvaniya” razryvov v resheniyakh kvazilineinykh sistem”, Dokl. AN SSSR, 136:2 (1961), 272–273
[3] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998
[4] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[5] Kulikovskii A. G., “O vozmozhnom vliyanii kolebanii v strukture razryva na mnozhestvo dopustimykh razryvov”, Dokl. AN SSSR, 275:6 (1984), 1349–1352
[6] Kulikovskii A. G., “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami: Volny rekombinatsii”, Prikl. matem. i mekhan., 32:6 (1968), 1125–1131
[7] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, Uspekhi matem. nauk, 63:2 (2008), 85–152 | DOI
[8] Kulikovskii A. G., Chugainova A. P., “O statsionarnoi strukture udarnykh voln v uprugikh sredakh i dielektrikakh”, Zh. eksperim. i teor. fiz., 137:4 (2010), 973–985
[9] Kasimov A. R., Faria L. M., Rosales R. R., “Model for shock wave chaos”, Phys. Rev. Lett., 110:10 (2013), 104104 | DOI
[10] Ilichev A. T., Tsypkin G. G., “Neustoichivosti odnorodnykh filtratsionnykh techenii s fazovym perekhodom”, Zh. eksperim. i teor. fiz., 134:4 (2008), 815–830
[11] Kulikovskii A. G., Gvozdovskaya N. I., “O vliyanii dispersii na mnozhestvo dopustimykh razryvov v mekhanike sploshnoi sredy”, Tr. MIAN, 223, 1998, 63–73
[12] Kulikovskii A. G., Chugainova A. P., “Modelirovanie vliyaniya melkomasshtabnykh dispersionnykh protsessov v sploshnoi srede na formirovanie krupnomasshtabnykh yavlenii”, Zh. vychisl. matem. i matem. fiz., 44:6 (2004), 1119–1126
[13] Chugainova A. P., “Nestatsionarnye resheniya obobschennogo uravneniya Kortevega–de Vriza–Byurgersa”, Tr. MIAN, 281, 2013, 215–223
[14] Oleinik O. A., “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, Uspekhi matem. nauk, 14:2 (1959), 159–164
[15] Samsonov A. M., “Travelling wave solutions for nonlinear dispersive equations with dissipation”, Applicable Analysis, 57 (1995), 85–100 | DOI