The resolvent approach for the wave equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 229-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mixed problem for the wave equation (in the cases of fixed ends and periodic conditions) with minimal requirements to the initial data are studied. An approach based on the contour integration of the resolvent for the operator generated by the corresponding spectral problem is developed. This approach makes it possible to obtain a classical solution without using the asymptotics for eigenvalues or any information on eigenfunctions.
@article{ZVMMF_2015_55_2_a7,
     author = {M. Sh. Burlutskaya and A. P. Khromov},
     title = {The resolvent approach for the wave equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {229--241},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a7/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. P. Khromov
TI  - The resolvent approach for the wave equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 229
EP  - 241
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a7/
LA  - ru
ID  - ZVMMF_2015_55_2_a7
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. P. Khromov
%T The resolvent approach for the wave equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 229-241
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a7/
%G ru
%F ZVMMF_2015_55_2_a7
M. Sh. Burlutskaya; A. P. Khromov. The resolvent approach for the wave equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a7/

[1] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983

[2] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, GITTL, M., 1953

[3] Smirnov V. I., Kurs vysshei matematiki, v. 4, Gostekhizdat, M., 1953

[4] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhizdat, M., 1953

[5] Ilin V. A., Izbrannye trudy, v. 1, OOO “Maks-press”, M., 2008

[6] Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskikh i parabolicheskikh uravnenii”, Uspekhi matem. nauk, 15:2 (1960), 97–154

[7] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991

[8] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950

[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[10] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964

[11] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rostovskogo un-ta, 1994

[12] Marchenko V. A., Operatory Shturma-Liuvilya i ikh prilozheniya, Nauk. Dumka, Kiev, 1977