@article{ZVMMF_2015_55_2_a6,
author = {A. V. Chernov},
title = {On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {213--228},
year = {2015},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/}
}
TY - JOUR AU - A. V. Chernov TI - On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 213 EP - 228 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/ LA - ru ID - ZVMMF_2015_55_2_a6 ER -
%0 Journal Article %A A. V. Chernov %T On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 213-228 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/ %G ru %F ZVMMF_2015_55_2_a6
A. V. Chernov. On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 213-228. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/
[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[2] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vyssh. uchebn. zavedenii. Matematika, 2009, no. 1, 3–43
[3] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978
[4] Vorontsov M. A., Zheleznykh N. I., Potapov M. M., “O gradientnoi protsedure vnutrirezonatornogo upravleniya svetovymi puchkami”, Zh. vychisl. matem. i matem. fiz., 30:3 (1990), 449–456
[5] Srochko V. A., “Modernizatsiya metodov gradientnogo tipa v zadachakh optimalnogo upravleniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2002, no. 12, 66–78
[6] Golichev I. I., Lukmanov R. L., “Metod razlozheniya funktsii ot operatora v nekotorykh zadachakh optimalnogo upravleniya”, Matem. zametki, 47:4 (1990), 17–25
[7] Kabanikhin S. I., Iskakov K. T., “Obosnovanie metoda naiskoreishego spuska v integralnoi postanovke obratnoi zadachi dlya giperbolicheskogo uravneniya”, Sib. matem. zh., 42:3 (2001), 567–584
[8] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2083–2102
[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984
[10] Minu M., Matematicheskoe programmirovanie, Nauka, M., 1990
[11] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, Graduate Studies in Mathematics, 112, American mathematical society, Providence, R.I., 2010 | DOI
[12] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003
[13] Lubyshev F. V., Manapova A. R., “Raznostnye approksimatsii zadach optimizatsii dlya polulineinykh ellipticheskikh uravnenii v vypukloi oblasti s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 53:1 (2013), 20–46 | DOI
[14] Vakhitov I. S., “Obratnaya zadacha identifikatsii starshego koeffitsienta v uravnenii diffuzii-reaktsii”, Dalnevostochnyi matem. zh., 10:2 (2010), 93–105
[15] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1616–1629
[16] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21
[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[18] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989
[19] Potapov D. K., “Zadachi upravleniya dlya uravnenii so spektralnym parametrom i razryvnym operatorom pri nalichii vozmuschenii”, Zh. Sib. federalnogo un-ta. Ser. Matematika i fizika, 5:2 (2012), 239–245
[20] Chernov A. V., “Ob odnom obobschenii metoda monotonnykh operatorov”, Differents. ur-niya, 49:4 (2013), 535–544
[21] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2011, no. 3, 95–107
[22] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2012, no. 3, 62–73
[23] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012
[24] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956