On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 213-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal control of a second-order semilinear elliptic diffusion-reaction equation is considered. Sufficient conditions for the convergence of the conditional gradient method are obtained without using assumptions (traditional for optimization theory) that ensure the Lipschitz continuity of the objective functional derivative. The total (over the entire set of admissible controls) preservation of solvability, a pointwise estimate of solutions, and the uniqueness of a solution to the homogeneous Dirichlet problem for a controlled elliptic equation are proved as preliminary results, which are of interest on their own.
@article{ZVMMF_2015_55_2_a6,
     author = {A. V. Chernov},
     title = {On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {213--228},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 213
EP  - 228
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/
LA  - ru
ID  - ZVMMF_2015_55_2_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 213-228
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/
%G ru
%F ZVMMF_2015_55_2_a6
A. V. Chernov. On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 213-228. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a6/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vyssh. uchebn. zavedenii. Matematika, 2009, no. 1, 3–43

[3] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978

[4] Vorontsov M. A., Zheleznykh N. I., Potapov M. M., “O gradientnoi protsedure vnutrirezonatornogo upravleniya svetovymi puchkami”, Zh. vychisl. matem. i matem. fiz., 30:3 (1990), 449–456

[5] Srochko V. A., “Modernizatsiya metodov gradientnogo tipa v zadachakh optimalnogo upravleniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2002, no. 12, 66–78

[6] Golichev I. I., Lukmanov R. L., “Metod razlozheniya funktsii ot operatora v nekotorykh zadachakh optimalnogo upravleniya”, Matem. zametki, 47:4 (1990), 17–25

[7] Kabanikhin S. I., Iskakov K. T., “Obosnovanie metoda naiskoreishego spuska v integralnoi postanovke obratnoi zadachi dlya giperbolicheskogo uravneniya”, Sib. matem. zh., 42:3 (2001), 567–584

[8] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2083–2102

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984

[10] Minu M., Matematicheskoe programmirovanie, Nauka, M., 1990

[11] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, Graduate Studies in Mathematics, 112, American mathematical society, Providence, R.I., 2010 | DOI

[12] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003

[13] Lubyshev F. V., Manapova A. R., “Raznostnye approksimatsii zadach optimizatsii dlya polulineinykh ellipticheskikh uravnenii v vypukloi oblasti s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 53:1 (2013), 20–46 | DOI

[14] Vakhitov I. S., “Obratnaya zadacha identifikatsii starshego koeffitsienta v uravnenii diffuzii-reaktsii”, Dalnevostochnyi matem. zh., 10:2 (2010), 93–105

[15] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1616–1629

[16] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[18] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[19] Potapov D. K., “Zadachi upravleniya dlya uravnenii so spektralnym parametrom i razryvnym operatorom pri nalichii vozmuschenii”, Zh. Sib. federalnogo un-ta. Ser. Matematika i fizika, 5:2 (2012), 239–245

[20] Chernov A. V., “Ob odnom obobschenii metoda monotonnykh operatorov”, Differents. ur-niya, 49:4 (2013), 535–544

[21] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2011, no. 3, 95–107

[22] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2012, no. 3, 62–73

[23] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012

[24] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956