Constructing two-step iterative methods with and without memory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some new iterative methods without memory are constructed to reach the optimal convergence order four using only three function evaluations to solve nonlinear equations. Per full cycle, each method from the derived classes is derivative-free. We further extend the derived classes of methods to contribute some schemes with memory, without any additional evaluation of the function. Hence, with a same cost, the contributed methods with memory possess higher $R$-orders and better efficiency indices. In order to attest the efficiency of the obtained methods, we employ numerical comparisons.
@article{ZVMMF_2015_55_2_a3,
     author = {Taher Lotfi and Katayoun Mahdiani and Parisa Bakhtiari and Fazlollah Soleymani},
     title = {Constructing two-step iterative methods with and without memory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {193},
     year = {2015},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/}
}
TY  - JOUR
AU  - Taher Lotfi
AU  - Katayoun Mahdiani
AU  - Parisa Bakhtiari
AU  - Fazlollah Soleymani
TI  - Constructing two-step iterative methods with and without memory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 193
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/
LA  - en
ID  - ZVMMF_2015_55_2_a3
ER  - 
%0 Journal Article
%A Taher Lotfi
%A Katayoun Mahdiani
%A Parisa Bakhtiari
%A Fazlollah Soleymani
%T Constructing two-step iterative methods with and without memory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 193
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/
%G en
%F ZVMMF_2015_55_2_a3
Taher Lotfi; Katayoun Mahdiani; Parisa Bakhtiari; Fazlollah Soleymani. Constructing two-step iterative methods with and without memory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/

[1] Kyurkchiev N., Iliev A., “On some multipoint methods arising from optimal in the sense of Kung–Traub algorithms”, Int. J. Math. Meth. Models Biosci., 2 (2013), 1–7

[2] Torregrosa J. R., Argyros I. K., Chun C., Cordero A., Soleymani F., “Iterative methods for nonlinear equations or systems and their applications”, J. Appl. Math., 2013, 656953, 2 pages pp.

[3] Iliev A., Kyurkchiev N., Nontrivial Methods in Numerical Analysis, Selected Topics in Numerical Analysis), 2010

[4] Kung H. T., Traub J. F., “Optimal order of one-point and multipoint iteration”, J. Assoc. Comput. Math., 21 (1974), 634–651 | DOI

[5] Soleymani F., “On finding robust approximate inverses for large sparse matrices”, Linear Multilinear Alg., 62 (2014), 1314–1334 | DOI

[6] Toutounian F., Soleymani F., “An iterative method for computing the approximate inverse of a square matrix and the Moore–Penrose inverse of a non-square matrix”, Appl. Math. Comput., 224 (2013), 671–680 | DOI

[7] Soleymani F., Stanimirovi P. S., “A higher order iterative method for computing the Drazin inverse”, Sci. World J., 2013, 708647, 11 pp.

[8] Soleymani F., “A fast convergent iterative solver for approximate inverse of matrices”, Numer. Linear Alg. Appl., 21 (2014), 439–452 | DOI

[9] Soleymani F., Stanimirovi P. S., Ullah M. Z., “On an accelerated iterative method for weighted Moore–Penrose inverse”, Appl. Math. Comput., 222 (2013), 365–371 | DOI

[10] Soheili A. R., Soleymani F., Petkovi M. D., “On the computation of weighted Moore–Penrose inverse using a high-order matrix method”, Comput. Math. Appl., 66 (2013), 2344–2351 | DOI

[11] Traub J. F., Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964

[12] Steffensen J. F., “Remarks on iteration”, Skand. Aktuar. Tidsr., 16 (1933), 64–72

[13] Hristov V., Iliev A., Kyurkchiev N., “A note on the convergence of nonstationary finite-difference analogues”, Comput. Math. Math. Phys., 45 (2005), 194–201

[14] Ignatova B., Kyurkchiev N., Iliev A., “Multipoint algorithms arising from optimal in the sense of Kung–Traub iterative procedures for numerical solution of nonlinear equations”, Gen. Math. Notes, 6 (2011), 45–79

[15] Kyurkchiev N., Iliev A., “A note on the “constructing” of nonstationary methods for solving nonlinear equations with raised speed of convergence”, Serdica J. Comput., 3 (2009), 47–74

[16] Dzunic J., Petković M. S., “On generalized multipoint root-solvers with memory”, J. Comput. Appl. Math., 236 (2012), 2909–2920 | DOI

[17] Hazrat R., Mathematica: A Problem-Centered Approach, Springer, London, 2010

[18] Hoste J., Mathematica Demystified, McGraw-Hill, New York, 2009