@article{ZVMMF_2015_55_2_a3,
author = {Taher Lotfi and Katayoun Mahdiani and Parisa Bakhtiari and Fazlollah Soleymani},
title = {Constructing two-step iterative methods with and without memory},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {193},
year = {2015},
volume = {55},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/}
}
TY - JOUR AU - Taher Lotfi AU - Katayoun Mahdiani AU - Parisa Bakhtiari AU - Fazlollah Soleymani TI - Constructing two-step iterative methods with and without memory JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 193 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/ LA - en ID - ZVMMF_2015_55_2_a3 ER -
%0 Journal Article %A Taher Lotfi %A Katayoun Mahdiani %A Parisa Bakhtiari %A Fazlollah Soleymani %T Constructing two-step iterative methods with and without memory %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 193 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/ %G en %F ZVMMF_2015_55_2_a3
Taher Lotfi; Katayoun Mahdiani; Parisa Bakhtiari; Fazlollah Soleymani. Constructing two-step iterative methods with and without memory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a3/
[1] Kyurkchiev N., Iliev A., “On some multipoint methods arising from optimal in the sense of Kung–Traub algorithms”, Int. J. Math. Meth. Models Biosci., 2 (2013), 1–7
[2] Torregrosa J. R., Argyros I. K., Chun C., Cordero A., Soleymani F., “Iterative methods for nonlinear equations or systems and their applications”, J. Appl. Math., 2013, 656953, 2 pages pp.
[3] Iliev A., Kyurkchiev N., Nontrivial Methods in Numerical Analysis, Selected Topics in Numerical Analysis), 2010
[4] Kung H. T., Traub J. F., “Optimal order of one-point and multipoint iteration”, J. Assoc. Comput. Math., 21 (1974), 634–651 | DOI
[5] Soleymani F., “On finding robust approximate inverses for large sparse matrices”, Linear Multilinear Alg., 62 (2014), 1314–1334 | DOI
[6] Toutounian F., Soleymani F., “An iterative method for computing the approximate inverse of a square matrix and the Moore–Penrose inverse of a non-square matrix”, Appl. Math. Comput., 224 (2013), 671–680 | DOI
[7] Soleymani F., Stanimirovi P. S., “A higher order iterative method for computing the Drazin inverse”, Sci. World J., 2013, 708647, 11 pp.
[8] Soleymani F., “A fast convergent iterative solver for approximate inverse of matrices”, Numer. Linear Alg. Appl., 21 (2014), 439–452 | DOI
[9] Soleymani F., Stanimirovi P. S., Ullah M. Z., “On an accelerated iterative method for weighted Moore–Penrose inverse”, Appl. Math. Comput., 222 (2013), 365–371 | DOI
[10] Soheili A. R., Soleymani F., Petkovi M. D., “On the computation of weighted Moore–Penrose inverse using a high-order matrix method”, Comput. Math. Appl., 66 (2013), 2344–2351 | DOI
[11] Traub J. F., Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964
[12] Steffensen J. F., “Remarks on iteration”, Skand. Aktuar. Tidsr., 16 (1933), 64–72
[13] Hristov V., Iliev A., Kyurkchiev N., “A note on the convergence of nonstationary finite-difference analogues”, Comput. Math. Math. Phys., 45 (2005), 194–201
[14] Ignatova B., Kyurkchiev N., Iliev A., “Multipoint algorithms arising from optimal in the sense of Kung–Traub iterative procedures for numerical solution of nonlinear equations”, Gen. Math. Notes, 6 (2011), 45–79
[15] Kyurkchiev N., Iliev A., “A note on the “constructing” of nonstationary methods for solving nonlinear equations with raised speed of convergence”, Serdica J. Comput., 3 (2009), 47–74
[16] Dzunic J., Petković M. S., “On generalized multipoint root-solvers with memory”, J. Comput. Appl. Math., 236 (2012), 2909–2920 | DOI
[17] Hazrat R., Mathematica: A Problem-Centered Approach, Springer, London, 2010
[18] Hoste J., Mathematica Demystified, McGraw-Hill, New York, 2009