@article{ZVMMF_2015_55_2_a2,
author = {A. M. Vetoshkin},
title = {Property of polynomials in two projectors},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {189--192},
year = {2015},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a2/}
}
A. M. Vetoshkin. Property of polynomials in two projectors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 189-192. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a2/
[1] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1968
[2] Prasolov V. V., Zadachi i teoremy lineinoi algebry, Nauka. Fizmatlit, M., 1996
[3] Ikramov Kh. D., “Odnovremennoe privedenie k blochno-treugolnomu vidu i teoremy o parakh kompleksnykh idempotent”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 979–982
[4] Ikramov Kh. D., “Ob odnovremennoi privodimosti k blochno-treugolnomu vidu par kosykh proektorov”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 181–182
[5] Dzhordzh A., Ikramov Kh. D., “Zamechanie o kanonicheskoi forme pary ortoproektorov”, Zap. nauchn. sem. POMI, 309, 2004, 17–22
[6] Ikramov Kh. D., “Kanonicheskie formy proektorov otnositelno unitarnogo podobiya i ikh prilozheniya”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1534–1539
[7] Vetoshkin A. M., “Matrichnye mnogochleny ot peremennykh proektorov, kotorye sami yavlyayutsya proektorami”, Avtomatizatsiya i kompyuterizatsiya informatsionnoi tekhniki i tekhnologii, 341, GOU VPO MGUL, M., 2008, 69–78