Property of polynomials in two projectors
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 189-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a polynomial in two projectors vanishes for all pairs of projectors only if all the coefficients of this polynomial are equal to zero.
@article{ZVMMF_2015_55_2_a2,
     author = {A. M. Vetoshkin},
     title = {Property of polynomials in two projectors},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {189--192},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a2/}
}
TY  - JOUR
AU  - A. M. Vetoshkin
TI  - Property of polynomials in two projectors
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 189
EP  - 192
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a2/
LA  - ru
ID  - ZVMMF_2015_55_2_a2
ER  - 
%0 Journal Article
%A A. M. Vetoshkin
%T Property of polynomials in two projectors
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 189-192
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a2/
%G ru
%F ZVMMF_2015_55_2_a2
A. M. Vetoshkin. Property of polynomials in two projectors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 189-192. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a2/

[1] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1968

[2] Prasolov V. V., Zadachi i teoremy lineinoi algebry, Nauka. Fizmatlit, M., 1996

[3] Ikramov Kh. D., “Odnovremennoe privedenie k blochno-treugolnomu vidu i teoremy o parakh kompleksnykh idempotent”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 979–982

[4] Ikramov Kh. D., “Ob odnovremennoi privodimosti k blochno-treugolnomu vidu par kosykh proektorov”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 181–182

[5] Dzhordzh A., Ikramov Kh. D., “Zamechanie o kanonicheskoi forme pary ortoproektorov”, Zap. nauchn. sem. POMI, 309, 2004, 17–22

[6] Ikramov Kh. D., “Kanonicheskie formy proektorov otnositelno unitarnogo podobiya i ikh prilozheniya”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1534–1539

[7] Vetoshkin A. M., “Matrichnye mnogochleny ot peremennykh proektorov, kotorye sami yavlyayutsya proektorami”, Avtomatizatsiya i kompyuterizatsiya informatsionnoi tekhniki i tekhnologii, 341, GOU VPO MGUL, M., 2008, 69–78