@article{ZVMMF_2015_55_2_a16,
author = {A. V. Kel'manov and V. I. Khandeev},
title = {A randomized algorithm for two-cluster partition of a set of vectors},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {335--344},
year = {2015},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a16/}
}
TY - JOUR AU - A. V. Kel'manov AU - V. I. Khandeev TI - A randomized algorithm for two-cluster partition of a set of vectors JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 335 EP - 344 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a16/ LA - ru ID - ZVMMF_2015_55_2_a16 ER -
%0 Journal Article %A A. V. Kel'manov %A V. I. Khandeev %T A randomized algorithm for two-cluster partition of a set of vectors %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 335-344 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a16/ %G ru %F ZVMMF_2015_55_2_a16
A. V. Kel'manov; V. I. Khandeev. A randomized algorithm for two-cluster partition of a set of vectors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 335-344. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a16/
[1] Anil K., Jain K., “Data clustering: 50 years beyond $k$-means”, Pattern Recognition Letters, 31 (2010), 651–666 | DOI
[2] MacQueen J. B., “Some methods for cassification and analysis of multivariate observations”, Proc. 5-th Berkeley Symp. of Mathematical Statistics and Probability, v. 1, Univ. of California Press, Berkeley, 281–297
[3] Rao M., “Cluster analysis and mathematical programming”, J. Amer. Statist. Assoc., 66 (1971), 622–626 | DOI
[4] Galashov A. E., Kelmanov A. V., “2-priblizhennyi algoritm dlya odnoi zadachi poiska semeistva neperesekayuschikhsya podmnozhestv vektorov”, Avtomatika i telemekhanika, 2014, no. 4, 5–17
[5] Dolgushev A. V., Kelmanov A. V., “K voprosu ob algoritmicheskoi slozhnosti odnoi zadachi klasternogo analiza”, Diskret. analiz i issled. operatsii, 17:2 (2010), 39–45
[6] Hansen P., Jaumard B., “Cluster analysis and mathematical programming”, Math. Programming, 79 (1997), 191–215
[7] Hansen P., Jaumard B., Mladenovich N., “Minimum sum of squares clustering in a low dimensional space”, J. Classification, 15 (1998), 37–55 | DOI
[8] Inaba M., Katch N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based clustering”, Proc. Annual Symp. on Comput. Geom., Stony Brook, New York, 1994, 332–339
[9] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI
[10] Ageev A. A., Kel'manov A. V., Pyatkin A. V., “NP-hardness of the Euclidean max-cut problem”, Doklady Mathematics, 89:3 (2014), 343–345 | DOI | DOI
[11] Dolgushev A. V., Kelmanov A. V., “Priblizhennyi algoritm resheniya odnoi zadachi klasternogo analiza”, Diskretnyi analiz i issledovanie operatsii, 18:2 (2011), 29–40
[12] Dolgushev A. V., Kelmanov A. V., Shenmaier V. V., “Priblizhennaya polinomialnaya skhema dlya odnoi zadachi klasternogo analiza”, Intellektualizatsiya obrabotki informatsii, 9-ya mezhdunarodnaya konferentsiya. Respublika Chernogoriya. Sb. dokl., Torus Press, M., 2012, 242–244
[13] Eremin I. I., Gimadi E. Kh., Kelmanov A. V., Pyatkin A. V., Khachai M. Yu., “2-priblizhennyi algoritm poiska kliki s minimalnym vesom vershin i reber”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 134–143
[14] Kelmanov A. V., “O slozhnosti nekotorykh zadach klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2106–2112
[15] Kelmanov A. V., “O slozhnosti nekotorykh zadach analiza dannykh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 2045–2051
[16] Kelmanov A. V., “Problema off-line obnaruzheniya povtoryayuschegosya fragmenta v chislovoi posledovatelnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2 (2008), 81–88
[17] Kelmanov A. V., Romanchenko S. M., Khamidullin S. A., “Tochnye psevdopolinomialnye algoritmy dlya nekotorykh trudnoreshaemykh zadach poiska podposledovatelnosti vektorov”, Zh. vychisl. matem. i matem. fiz., 53:1 (2013), 143–153 | DOI
[18] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach klasternogo analiza vektornykh posledovatelnostei”, Diskretnyi analiz i issledovanie operatsii, 20:2 (2013), 47–57
[19] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 2059–2065
[20] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. AN, 421:5 (2008), 590–592
[21] Kelmanov A. V., Khandeev V. I., “Polinomialnyi algoritm s otsenkoi tochnosti 2 dlya resheniya odnoi zadachi klasternogo analiza”, Diskretnyi analiz i issledovanie operatsii, 20:4 (2013), 36–45
[22] Rajeev M., Prabhakar R., Randomized algorithms, Cambridge University Press, New York, 1995
[23] Markov A. A., Ischislenie veroyatnostei, Izd-vo Tipografiya Imperatorskoi Akademii Nauk, SPb, 1900