Error estimation for computed polycrystalline texture characteristics by varying measurement parameters in electron microscopy methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 322-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional mathematical model is proposed for a polycrystalline specimen and an electron microscopy experiment with varying measurement parameters, such as the scanning step and the threshold disorientation angle. Experimental results are used to compare specimen texture characteristics and measurements: the grain size distribution, average grain size, variance; disorientation angle distribution, average disorientation angle, variance; and estimates of the orientation distribution function in three-dimensional form in a one-parameter representation. All these distributions are tested by applying a chi-square homogeneity test. The most important aspects of the experiment are formulated as propositions.
@article{ZVMMF_2015_55_2_a15,
     author = {A. O. Antonova and T. I. Savyolova},
     title = {Error estimation for computed polycrystalline texture characteristics by~varying measurement parameters in electron microscopy methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {322--334},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a15/}
}
TY  - JOUR
AU  - A. O. Antonova
AU  - T. I. Savyolova
TI  - Error estimation for computed polycrystalline texture characteristics by varying measurement parameters in electron microscopy methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 322
EP  - 334
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a15/
LA  - ru
ID  - ZVMMF_2015_55_2_a15
ER  - 
%0 Journal Article
%A A. O. Antonova
%A T. I. Savyolova
%T Error estimation for computed polycrystalline texture characteristics by varying measurement parameters in electron microscopy methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 322-334
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a15/
%G ru
%F ZVMMF_2015_55_2_a15
A. O. Antonova; T. I. Savyolova. Error estimation for computed polycrystalline texture characteristics by varying measurement parameters in electron microscopy methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 322-334. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a15/

[1] Schwartz A. J., Kumar M., Adams B. L., Field D. P., Electron backscatter diffraction in materials science, Second edition, Springer, N.Y., 2009

[2] Danilenko V. N., Mironov S. Yu., Belyakov A. N., Zhilyaev A. P., “Primenenie EBSD analiza v fizicheskom materialovedenii (obzor)”, Zavodskaya laboratoriya. Diagnostika materialov, 78:2 (2012), 28–46

[3] Humphreys F. J., “Grain and subgrain characterisation by electron baclcscatter diffraction”, J. Mater. Sci., 36 (2001), 3833–3854 | DOI

[4] Mironov S. Yu., Danilenko V. N., Myshlyaev M. M., Korneva A. V., “Analiz prostranstvennogo raspredeleniya orientirovok elementov struktury polikristallov, poluchaemogo metodami prosvechivayuschei elektronnoi mikroskopii i obratno rasseyannogo puchka elektronov v skaniruyuschem elektronnom mikroskope”, Fizika tverdogo tela, 47:7 (2005), 1217–1225

[5] Gottshtain G., Fiziko-khimicheskie osnovy materialovedeniya, BINOM. Laboratoriya znanii, M., 2009

[6] Zaefferer S., “Application of orientation microscopy in SEM and TEM for study of texture formation during recrystallisation processes”, Textures of Materials, ICOTOM 14 (2005), 213–128

[7] Humphreys F. J., “Review grain and subgrain characterization by electron baclcscatter diffraction”, J. Mater. Sci., 36 (2001), 3833–3854 | DOI

[8] Randle V., “Electron baclcscatter diffraction: strategies for reliable data acquisition and processing”, Mater. Character, 60 (2009), 913–922 | DOI

[9] Savelova T. I., Ivanova T. M., Sypchenko M. V., Metody resheniya nekorrektnykh zadach teksturnogo analiza i ikh prilozheniya, NIYaU MIFI, M., 2012

[10] Guilmeau E., Henrist S., Suzuki T. S., Saldca Y., Chateigner D., Grossin D., Ouladiaf B., “Texture of Alumina by neutron diffraction and SEM-EBSD”, Textures of Materials, ICOTOM 14 (2005), 179–184

[11] Bozzolo N., Gerpach F., Sawina G., Wagner F., “Accuracy of orientation distribution function determination based on EBSD data. A case study of a recrystallized low alloyed Zr sheet”, J. Microscopy, 227 (2007), 245–283 | DOI

[12] Savelova T. I., Sypchenko M. V., “Vychislenie funktsii raspredeleniya orientatsii po naboru otdelnykh orientirovok na gruppe vraschenii $SO(3)$”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1015–1028

[13] Aganin K. P., Savelova T. I., “Otsenki tochnosti yadernykh i proektsionnykh metodov vosstanovleniya funktsii raspredeleniya orientatsii na gruppe vraschenii $SO(3)$”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1087–1101

[14] Savelova T. I., Sypchenko M. V., “Otsenka tochnosti dlya vosstanovleniya funktsii raspredeleniya zeren dlya zavisimykh orientatsiei i s uchetom razmerov zeren”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 879–890

[15] Roginskii K. N., Savelova T. I., “Vychislenie polyusnykh figur yadernym metodom po naboru otdelnykh orientatsii zeren na gruppe $SO(3)$”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 949–966

[16] Prazolo S., Sursaeva V. G., Prior D. J., “Optical grain size measurements: What is being measured? Comparative study of optical and EBSD grain size determination in 2D Al foil”, Textures of Materials, ICOTOM 14 (2005), 213–128

[17] Sypchenko M. V., Savelova T. I., “Nekotorye problemy izmerenii orientatsii otdelnykh zeren i vychislenie usrednennykh uprugikh svoistv magniya”, Zavodskaya laboratoriya. Diagnostika materialov, 2010, no. 6, 39–44

[18] Savelova T. I., Sypchenko M. V., “Issledovanie tochnosti modelirovaniya tekstury polikristalla po dannym izmerenii otdelnykh orientirovok”, Kristallografiya, 55:4 (2010), 744–748

[19] Zevail A., Tomas Dzh., Trekhmernaya elektronnaya mikroskopiya v realnom vremeni, Izdatelskii dom INTELLEKT, Dolgoprudnyi, 2013

[20] Borovkov M. V., Savelova T. I., “Vychislenie normalnykh raspredelenii na gruppe vraschenii metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 112–128

[21] Borovkov M., Savelova T., “The computational approaches to calculate normal distributions on the rotation group”, Mag. Appl. Cristallogr., 40 (2007), 449–455 | DOI

[22] Aivazyan S. A., Mkhitaryan V. S., Prikladnaya statistika i osnovy ekonometriki, YuNITI-DATA, M., 2001

[23] software channel 5, http://www.hkltechnology.com/

[24] Savelova T. I., Metod Monte-Karlo, NIYaU MIFI, M., 2011

[25] Natan A. A., Gorbachev O. G., Guz S. A., Matematicheskaya statistika, MZ Press, M., 2004