@article{ZVMMF_2015_55_2_a14,
author = {E. M. Rudoy},
title = {Domain decomposition method for a model crack problem with a possible contact of crack edges},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {310--321},
year = {2015},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/}
}
TY - JOUR AU - E. M. Rudoy TI - Domain decomposition method for a model crack problem with a possible contact of crack edges JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 310 EP - 321 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/ LA - ru ID - ZVMMF_2015_55_2_a14 ER -
%0 Journal Article %A E. M. Rudoy %T Domain decomposition method for a model crack problem with a possible contact of crack edges %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 310-321 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/ %G ru %F ZVMMF_2015_55_2_a14
E. M. Rudoy. Domain decomposition method for a model crack problem with a possible contact of crack edges. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 310-321. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/
[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[2] Khludnev A. M., “Teoriya treschin s vozmozhnym kontaktom beregov”, Uspekhi mekhan., 3:4 (2005), 41–82
[3] Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, Clarendon Press, 1999
[4] Mathew T., Domain decomposition methods for the numerical solution of partial differential equations, Springer, Berlin, 2008
[5] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979
[6] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979
[7] Bayada G., Sabil J., Sassi T., “A Neumann–Neumann domain decomposition algorithm for the Signorini problem”, Applied Mathematics Letters, 17:10 (2004), 1153–1159 | DOI
[8] Daněk J., Hlaváček I., Nedomac J., “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity”, Mathematics and Computers in Simulation, 68 (2005), 271–300 | DOI
[9] Haslinger J., Jučera R., Sassi T., “A domain decomposition algorithm for contact problems: analysis and implementation”, Math. Model. Nat. Phenom., 4:1 (2009), 123–146 | DOI
[10] Koko J., “Uzawa bloc relaxation domain decomposition method for a two?body frictionless contact problem”, App. Math. Lett., 22:1, 1534–1538
[11] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi dlya uravneniya Passona s ogranicheniyami tipa neravenstv v oblasti s razrezom”, Sib. zhurn. industr. matem., 8:1 (2005), 41–49
[12] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi deformirovaniya uprugoplasticheskogo tela s treschinoi pri uslovii vozmozhnogo kontakta beregov”, Sib. zhurnal vychisl. matem., 9:4 (2006), 301–310
[13] Hintermüller M., Kovtunenko V., Kunisch K., “The primal-dual active set method for a crack problem with non-penetration”, IMA J. Appl. Math., 69 (2004), 1–26 | DOI
[14] Hintermüller M., Ito K., Kunisch K., “The primal-dual active set strategy as a semismooth Newton method”, SIAM J. Optim., 13:2 (2003), 865–888
[15] Kovtunenko V. A., “Numerical simulation of the non-linear crack problem with nonpenetration”, Math. Meth. Appl. Sci., 27:2 (2004), 163–179 | DOI
[16] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Southampton–Boston, 2000
[17] Kozlov V. A., Khludnev A. M., “Asimptotika resheniya uravneniya Puassona vblizi vershiny treschiny s nelineinymi kraevymi usloviyami na beregakh”, Dokl. AN, 411:5 (2006), 583–586
[18] Fan K., “Minimax theorems”, Proc. Acad. Sci. USA, 39 (1953), 42–48 | DOI
[19] Céa J., Optimisation, Théorie et algorithmes, Gauthier-Villars Paris, Dunod, 1971
[20] Ito K., Kunisch K., Lagrange multiplier approach to variational problems and applications, SIAM, Philadelphia, 2008
[21] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[22] Hecht F., “New development in FreeFem++”, J. Numer. Math., 20:3–4 (2012), 251–265
[23] Allaire G., Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation, Oxford University Press, London, 2007