Domain decomposition method for a model crack problem with a possible contact of crack edges
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 310-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The scalar Poisson equation is considered in a domain having a cut with unilateral constraints specified on its edges. An iterative method is proposed for solving the problem. The method is based on domain decomposition and the Uzawa algorithm for finding a saddle point of the Lagrangian. According to the method, the original domain is divided into two subdomains and a linear problem for Poisson’s equation is solved in each of them at every iteration step. The solution in one domain is related to that in the other by two Lagrange multipliers: one is used to match the solutions, and the other, to satisfy the unilateral constraint. Examples of the numerical solution of the problem are given.
@article{ZVMMF_2015_55_2_a14,
     author = {E. M. Rudoy},
     title = {Domain decomposition method for a model crack problem with a possible contact of crack edges},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {310--321},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Domain decomposition method for a model crack problem with a possible contact of crack edges
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 310
EP  - 321
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/
LA  - ru
ID  - ZVMMF_2015_55_2_a14
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Domain decomposition method for a model crack problem with a possible contact of crack edges
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 310-321
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/
%G ru
%F ZVMMF_2015_55_2_a14
E. M. Rudoy. Domain decomposition method for a model crack problem with a possible contact of crack edges. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 310-321. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a14/

[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[2] Khludnev A. M., “Teoriya treschin s vozmozhnym kontaktom beregov”, Uspekhi mekhan., 3:4 (2005), 41–82

[3] Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, Clarendon Press, 1999

[4] Mathew T., Domain decomposition methods for the numerical solution of partial differential equations, Springer, Berlin, 2008

[5] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979

[6] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979

[7] Bayada G., Sabil J., Sassi T., “A Neumann–Neumann domain decomposition algorithm for the Signorini problem”, Applied Mathematics Letters, 17:10 (2004), 1153–1159 | DOI

[8] Daněk J., Hlaváček I., Nedomac J., “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity”, Mathematics and Computers in Simulation, 68 (2005), 271–300 | DOI

[9] Haslinger J., Jučera R., Sassi T., “A domain decomposition algorithm for contact problems: analysis and implementation”, Math. Model. Nat. Phenom., 4:1 (2009), 123–146 | DOI

[10] Koko J., “Uzawa bloc relaxation domain decomposition method for a two?body frictionless contact problem”, App. Math. Lett., 22:1, 1534–1538

[11] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi dlya uravneniya Passona s ogranicheniyami tipa neravenstv v oblasti s razrezom”, Sib. zhurn. industr. matem., 8:1 (2005), 41–49

[12] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi deformirovaniya uprugoplasticheskogo tela s treschinoi pri uslovii vozmozhnogo kontakta beregov”, Sib. zhurnal vychisl. matem., 9:4 (2006), 301–310

[13] Hintermüller M., Kovtunenko V., Kunisch K., “The primal-dual active set method for a crack problem with non-penetration”, IMA J. Appl. Math., 69 (2004), 1–26 | DOI

[14] Hintermüller M., Ito K., Kunisch K., “The primal-dual active set strategy as a semismooth Newton method”, SIAM J. Optim., 13:2 (2003), 865–888

[15] Kovtunenko V. A., “Numerical simulation of the non-linear crack problem with nonpenetration”, Math. Meth. Appl. Sci., 27:2 (2004), 163–179 | DOI

[16] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Southampton–Boston, 2000

[17] Kozlov V. A., Khludnev A. M., “Asimptotika resheniya uravneniya Puassona vblizi vershiny treschiny s nelineinymi kraevymi usloviyami na beregakh”, Dokl. AN, 411:5 (2006), 583–586

[18] Fan K., “Minimax theorems”, Proc. Acad. Sci. USA, 39 (1953), 42–48 | DOI

[19] Céa J., Optimisation, Théorie et algorithmes, Gauthier-Villars Paris, Dunod, 1971

[20] Ito K., Kunisch K., Lagrange multiplier approach to variational problems and applications, SIAM, Philadelphia, 2008

[21] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[22] Hecht F., “New development in FreeFem++”, J. Numer. Math., 20:3–4 (2012), 251–265

[23] Allaire G., Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation, Oxford University Press, London, 2007