Axisymmetric instability of the Poiseuille–Couette flow between concentric cylinders at high Reynolds numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 295-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the pressure-driven flow in an annular channel with a wall moving in the axial direction, its linear instability with respect to axisymmetric perturbations at high Reynolds numbers is investigated within the framework of the triple-deck theory. When the gap between the cylinders is sufficiently small (as compared to the radii of the cylinders), it is shown that the perturbations can split into two wave packets, the first of which grows faster and moves at a higher velocity.
@article{ZVMMF_2015_55_2_a12,
     author = {I. V. Savenkov},
     title = {Axisymmetric instability of the {Poiseuille{\textendash}Couette} flow between concentric cylinders at high {Reynolds} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {295--301},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a12/}
}
TY  - JOUR
AU  - I. V. Savenkov
TI  - Axisymmetric instability of the Poiseuille–Couette flow between concentric cylinders at high Reynolds numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 295
EP  - 301
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a12/
LA  - ru
ID  - ZVMMF_2015_55_2_a12
ER  - 
%0 Journal Article
%A I. V. Savenkov
%T Axisymmetric instability of the Poiseuille–Couette flow between concentric cylinders at high Reynolds numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 295-301
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a12/
%G ru
%F ZVMMF_2015_55_2_a12
I. V. Savenkov. Axisymmetric instability of the Poiseuille–Couette flow between concentric cylinders at high Reynolds numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 295-301. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a12/

[1] Walton A. G., “Stability of circular Poiseuille–Couette flow to axisymmetric disturbances”, J. Fluid Mech., 500 (2004), 169–210 | DOI

[2] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Ser. mekhan. zhidkosti i gaza, 1969, no. 4, 53–58

[3] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. A, 312:1509 (1969), 181–206 | DOI

[4] Messiter A. F., “Boundary-layer flow near the trailing edge of a flat plate”, SIAM J. Appl. Math., 18:1 (1970), 241–257 | DOI

[5] Savenkov I. V., “Ob osesimmetrichnoi neustoichivosti napornogo techeniya v koltsevom kanale pri vysokikh chislakh Reinoldsa”, Zh. vychisl. matem. i matem. fiz., 53:10 (2013), 1739–1745 | DOI

[6] Zhuk V. I., Ryzhov O. S., “O svobodnom vzaimodeistvii pristenochnykh sloev s yadrom techeniya Puazeilya”, Dokl. AN SSSR, 257:1 (1981), 55–59

[7] Bogdanova E. V., Ryzhov O. S., “O kolebaniyakh, vozbuzhdaemykh garmonicheskim ostsillyatorom v techenii Puazeilya”, Dokl. AN SSSR, 257:4 (1981), 837–841

[8] Savenkov I. V., “Osobennosti lineinoi stadii razvitiya trekhmernykh volnovykh paketov v ploskom techenii Puazeilya”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1271–1279

[9] Smith F. T., “On the high Reynolds number theory of laminar flows”, IMA J. Appl. Math., 28:3 (1982), 207–281 | DOI

[10] Zhuk V. I., Protsenko I. G., “Asimptoticheskaya struktura volnovykh vozmuschenii v teorii ustoichivosti ploskogo techeniya Kuetta–Puazeilya”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1060–1080

[11] Savenkov I. V., “Osobennosti volnovykh paketov v ploskom techenii Puazeilya–Kuetta”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1274–1281