On spatial discretization of the one-dimensional quasi-gasdynamic system of equations with general equations of state and entropy balance
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 267-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-dimensional quasi-gasdynamic system of equations in the form of mass, momentum, and total energy conservation laws with general gas equations of state is considered. A family of three-point symmetric spatial discretizations of this system is studied for which the internal energy equation has a suitable form (without imbalance terms). An entropy balance equation is derived, and the influence exerted by the choice of discretizations of various terms on the form of difference imbalance terms in this equation is determined. Special discretizations are presented for which the corresponding nondivergence imbalance terms are zero. The Euler system of equations is solved numerically in the cases of a perfect polytropic gas, stiffened gas, and the van der Waals equations of state.
@article{ZVMMF_2015_55_2_a10,
     author = {V. A. Gavrilin and A. A. Zlotnik},
     title = {On spatial discretization of the one-dimensional quasi-gasdynamic system of equations with general equations of state and entropy balance},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {267--284},
     year = {2015},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a10/}
}
TY  - JOUR
AU  - V. A. Gavrilin
AU  - A. A. Zlotnik
TI  - On spatial discretization of the one-dimensional quasi-gasdynamic system of equations with general equations of state and entropy balance
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 267
EP  - 284
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a10/
LA  - ru
ID  - ZVMMF_2015_55_2_a10
ER  - 
%0 Journal Article
%A V. A. Gavrilin
%A A. A. Zlotnik
%T On spatial discretization of the one-dimensional quasi-gasdynamic system of equations with general equations of state and entropy balance
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 267-284
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a10/
%G ru
%F ZVMMF_2015_55_2_a10
V. A. Gavrilin; A. A. Zlotnik. On spatial discretization of the one-dimensional quasi-gasdynamic system of equations with general equations of state and entropy balance. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 2, pp. 267-284. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_2_a10/

[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[3] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2009

[4] Elizarova T. G., Shilnikov E. V., “Vozmozhnosti kvazigazodinamicheskogo algoritma dlya chislennogo modelirovaniya techenii gaza”, Zh. vychisl. matem. i matem. fiz., 49:3 (2009), 549–566

[5] Elizarova T. G., Shilnikov E. V., “Analiz vychislitelnykh svoistv kvazigazodinamicheskogo algoritma na primere resheniya uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 1953–1969

[6] Zlotnik A. A., Chetverushkin B. N., “O parabolichnosti kvazigazodinamicheskoi sistemy uravnenii, ee giperbolicheskoi 2-go poryadka modifikatsii i ustoichivosti malykh vozmuschenii dlya nikh”, Zh. vychisl. matem. i matem. fiz., 48:3 (2008), 445–472

[7] Zlotnik A. A., “Kvazigazodinamicheskaya sistema uravnenii s obschimi uravneniyami sostoyaniya”, Dokl. AN, 431:5 (2010), 605–609

[8] Zlotnik A. A., “O kvazigazodinamicheskoi sisteme uravnenii s obschimi uravneniyami sostoyaniya i istochnikom tepla”, Matem. modelirovanie, 22:7 (2010), 53–64

[9] Zlotnik A. A., “Linearizovannaya ustoichivost ravnovesnykh reshenii kvazigazodinamicheskoi sistemy uravnenii”, Dokl. AN, 433:6 (2010), 599–603

[10] Zlotnik A., Gavrilin V., “On quasi-gasdynamic system of equations with general equations of state and its application”, Math. Model. Analys., 16:4 (2011), 509–526 | DOI

[11] Zlotnik A. A., “Prostranstvennaya diskretizatsiya odnomernoi kvazigazodinamicheskoi sistemy uravnenii i uravnenie balansa entropii”, Zh. vychisl. matem. i matem. fiz., 52:7 (2012), 1304–1316

[12] Kvasnikov I. A., Termodinamika i statisticheskaya fizika, v. 1, Teoriya ravnovesnykh sistem. Termodinamika, Izd. 2-e, Editorial URSS, M., 2002

[13] Toro E. F., Riemann solvers and numerical methods for fluid dynamics, Springer, Berlin–Heidelberg, 1997

[14] Noh W. F., “Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux”, J. Comput. Phys., 72 (1987), 78–120 | DOI

[15] Tang H.-Z., “Gas-kinetic schemes for compressible flow of real gases”, Comput. Math. Appl., 41:3 (2001), 723–734 | DOI

[16] Buffard T., Gallouet T., Herard J.-M., “A sequel to a rough Godunov scheme: application to real gases”, Comput. Fluids, 29:7 (2000), 813–847 | DOI

[17] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987

[18] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976