Application of coordinate transformations in numerical simulation of tsunami runup by the large particle method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 113-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm for computing the runup of a solitary tsunami wave in the case of complex shoreline topography is proposed. The algorithm involves the construction of coordinate mappings that transform a uniform rectangular grid over a reference computational domain into a grid over a physical domain with mesh refinement near the shoreline. The application of such coordinate mappings makes it possible to substantially reduce the number of grid points and save computation time. The mathematical model is based on the shallow water equations, and the problem is solved using the large particle method. An actual example is used to illustrate the computation of a curvilinear grid and the inundation area configuration.
@article{ZVMMF_2015_55_1_a9,
     author = {A. V. Kofanov and V. D. Liseikin and A. D. Rychkov},
     title = {Application of coordinate transformations in numerical simulation of~tsunami runup by the large particle method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {113--120},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a9/}
}
TY  - JOUR
AU  - A. V. Kofanov
AU  - V. D. Liseikin
AU  - A. D. Rychkov
TI  - Application of coordinate transformations in numerical simulation of tsunami runup by the large particle method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 113
EP  - 120
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a9/
LA  - ru
ID  - ZVMMF_2015_55_1_a9
ER  - 
%0 Journal Article
%A A. V. Kofanov
%A V. D. Liseikin
%A A. D. Rychkov
%T Application of coordinate transformations in numerical simulation of tsunami runup by the large particle method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 113-120
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a9/
%G ru
%F ZVMMF_2015_55_1_a9
A. V. Kofanov; V. D. Liseikin; A. D. Rychkov. Application of coordinate transformations in numerical simulation of tsunami runup by the large particle method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a9/

[1] Agoshkov V. L., Ambrosi D., Pennati V., Quarteroni A., Saleri F., “Mathematical and numerical modelling of shallow water flow”, Computat. Mech., 11:5–6 (1993), 280–299 | DOI

[2] Kashiyama K., Ohba Y., Takagi T., Behr M., Tezduyar T., “Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows”, Computat. Mech., 23:2 (1999), 144–150 | DOI

[3] Mohammadian A., Le Roux D. Y., Tajrishi M., “A conservative extension of the method of characteristics for ID shallow flows”, Appl. Math. Modelling, 31:2 (2007), 332–348 | DOI

[4] Lai J.-S., Guo W.-D., Lin G.-F., Tan Y.-C., “A well-balanced upstream flux-splitting finite-volume scheme for shallow-water flow simulations with irregular bed topography”, Intern. J. Numer. Meth. in Fluids, 62:8 (2010), 927–944

[5] Fernandez-Nieto E. D., Marin J., Monnier J., “Coupling superposed ID and 2D shallow'water models: Source terms in finite volume schemes”, Computers and Fluids, 39:6 (2010), 1070–1082 | DOI

[6] Oger G., Doring M., Alessandrini V., Ferrant P., “Two-dimensional SPH simulations of wedge water entries”, J. Comput. Phys., 213 (2006), 803–822 | DOI

[7] Khrapov S. S., Khoperskov A. V., Kuzmin N. M., Pisarev A. V., Kobelev I. A., “Chislennaya skhema dlya modelirovaniya dinamiki poverkhnostnykh vod na osnove kombinirovannogo SPH-TVD podkhoda”, Vychisl. metody i programmirovanie, 12 (2011), 282–297

[8] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982

[9] De Leffe M., Le Touze D., Alessandrini B., “SPH modeling of shallow-water coastal flows”, J. Hydraulic Research, 48, Extra Issue (2010), 118–125 | DOI

[10] Kofanov A. V., Liseikin V. D., “Postroenie setok dlya konfiguratsii, zadannykh diskretno”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 938–945 | DOI

[11] Kofanov A. V., Liseikin V. D., Rychkov A. D., “Primenenie sharovogo metricheskogo tenzora dlya adaptatsii setok i resheniya prikladnykh zadach”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 653–670

[12] Liseikin V. D., Grid generation methods, Springer, Berlin, 2010

[13] Liseikin V. D., Rychkov A. D., Kofanov A. V., “Applications of a comprehensive grid method to solution of three-dimensional boundary value problems”, J. Comput. Phys., 230 (2011), 7755–7774 | DOI

[14] Liseikin V. D., Rynkov A. D., Kofanov A. V., Tekhnologiya adaptivnykh setok dlya chislennogo resheniya prikladnykh zadach, NGU, Novosibirsk, 2011

[15] Danaev N. T., Liseikin V. D., Yanenko N. N., “O chislennom raschete dvizheniya vyazkogo gaza vokrug tela vrascheniya na podvizhnoi setke”, Chisl. metody mekhan. sploshnoi sredy, 11:1 (1980), 51

[16] Winslow A. M., Adaptive mesh zoning by the equipotential method, UCID-19062, Lawrence Livermore National Laboratories, 1981

[17] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705