Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 89-104

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of finding the coefficient $\rho(x)=\rho_0+r(x)$ multiplying $u_t$ in the heat equation is studied. The unknown function $r(x)\geqslant0$ is sought in the class of bounded functions, and $\rho_0$ is a given positive constant. In addition to the initial and boundary conditions (data of the direct problem), a nonlocal observation condition is specified in the form $\int\limits_0^T u(x,t)d\mu(t)=\chi(x)$ with a given measure $d\mu(t)$ and a function $\chi(x)$. The case of integral observation (i.e., $d\mu(t)=\omega(t)dt$) is considered separately. Sufficient conditions for the existence and uniqueness of a solution to the inverse problem are obtained in the form of easy-to-check inequalities. Examples of inverse problems are given for which the assumptions of the theorems proved in this work are satisfied.
@article{ZVMMF_2015_55_1_a7,
     author = {A. B. Kostin},
     title = {Recovery of the coefficient of $u_t$ in the heat equation from a condition of~nonlocal observation in time},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a7/}
}
TY  - JOUR
AU  - A. B. Kostin
TI  - Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 89
EP  - 104
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a7/
LA  - ru
ID  - ZVMMF_2015_55_1_a7
ER  - 
%0 Journal Article
%A A. B. Kostin
%T Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 89-104
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a7/
%G ru
%F ZVMMF_2015_55_1_a7
A. B. Kostin. Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a7/