Instability of a nonlinear system of two oscillators under main and combination resonances
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 56-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear reversible system of two oscillators depending on a small parameter $q>0$ is considered. The instability of the zero equilibrium of this system under a nonautonomous periodic perturbation is analyzed using the Krylov–Bogolyubov averaging method. In the case of main and combination resonances, independent integrals of the averaged autonomous nonlinear system are found, which are used to determine the maximum amplitude of oscillations of solutions to the original system for small $q$. In the case of the main resonance, the averaged system is reduced to a completely integrable Hamiltonian system by making a change of variables. In the case of combination resonance, the averaged system is integrated by applying the integrals found.
@article{ZVMMF_2015_55_1_a5,
     author = {N. A. Lyul'ko},
     title = {Instability of a nonlinear system of two oscillators under main and combination resonances},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {56--73},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a5/}
}
TY  - JOUR
AU  - N. A. Lyul'ko
TI  - Instability of a nonlinear system of two oscillators under main and combination resonances
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 56
EP  - 73
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a5/
LA  - ru
ID  - ZVMMF_2015_55_1_a5
ER  - 
%0 Journal Article
%A N. A. Lyul'ko
%T Instability of a nonlinear system of two oscillators under main and combination resonances
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 56-73
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a5/
%G ru
%F ZVMMF_2015_55_1_a5
N. A. Lyul'ko. Instability of a nonlinear system of two oscillators under main and combination resonances. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 56-73. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a5/

[1] Kurlenya M. V., Serdyukov S. V., “Intensifikatsiya dobychi nefti pri nizkochastotnom vibroseismicheskom vozdeistvii”, Gornyi informatsionno-analiticheskii byulleten, 2004, no. 5, 29–34

[2] Belonosov V. S., Dorovskii V. N., Belonosov A. S., Dorovskii S. V., “Gidrodinamika gazosoderzhaschikh sloistykh sistem”, Uspekhi mekhan., 3:2 (2005), 37–70

[3] Arnold V. I., “Obratimye sistemy”, Sbornik trudov V. I. Arnolda, Nauka, M., 1984, 355–363

[4] Bibikov Yu. N., Lecture notes in mathematics. Local theory of nonlinear analytic ordinary differential equations, Springer-Verlag, Berlin–Heidelberg–New-York, 1979

[5] Landa P. S., Nelineinye kolebaniya i volny, Knizhnyi dom “Librokom”, M., 2010

[6] Morozov A. D., Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, NITs “Regulyarnaya i khaoticheskaya dinamika”. Institut kosmicheskikh issledovanii, M.–Izhevsk, 2005

[7] Dzhakalya G. E. O., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979

[8] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1987

[9] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972

[10] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984

[11] Den-Gartog Dzh. P., Mekhanicheskie kolebaniya, Fizmatgiz, M., 1960

[12] Neimark Yu. I., Dinamicheskie sistemy i upravlyaemye protsessy, Knizhnyi dom “Librokom”, M., 2010

[13] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995

[14] Treschev D. V., Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Fazis, M., 1998

[15] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974

[16] Krylov N. M., Bogolyubov N. N., Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1973

[17] Mitropolskii Yu. A., Metod usredneniya v nelineinoi mekhanike, Nauk. Dumka, Kiev, 1971

[18] Arnold V. I., Kozlov V. I., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290

[19] Zabreiko P. P., Ledovskaya I. B., “K obosnovaniyu metoda N. N. Bogolyubova–N. M. Krylova dlya obyknovennykh differentsialnykh uravnenii”, Differents. ur-niya, 5:2 (1969), 240–253

[20] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[21] Belonosov V. S., “Spektralnye svoistva obobschennykh funktsii i asimptoticheskie metody teorii vozmuschenii”, Matem. sb., 203:3 (2012), 3–22 | DOI

[22] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953

[23] Kholostova O. V., “O periodicheskikh dvizheniyakh neavtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri parametricheskom rezonanse osnovnogo tipa”, Prikl. matem. i mekhan., 66:4 (2002), 540–551

[24] Markeev A. P., “Parametricheskii rezonans i nelineinye kolebaniya tyazhelogo tverdogo tela v okrestnosti ego ploskikh vraschenii”, Izv. RAN. Mekhan. tverd. tela, 1995, no. 5, 34–44

[25] Lyulko N. A., Kudryavtseva N. A., Kudryavtsev A. N., “Asimpoticheskii i chislennyi analiz parametricheskogo rezonansa v nelineinoi sisteme dvukh ostsillyatorov”, Sib. elektronnye matem. izvestiya, 11 (2014), 675–694