Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 46-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations is examined. For the eigenvalues with prescribed indices, the existence and uniqueness of the solution is investigated. A numerical method for solving this problem is proposed, and some numerical results are presented.
@article{ZVMMF_2015_55_1_a4,
     author = {E. D. Kalinin},
     title = {Solving the multiparameter eigenvalue problem for weakly coupled systems of second order {Hamilton} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {46--55},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a4/}
}
TY  - JOUR
AU  - E. D. Kalinin
TI  - Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 46
EP  - 55
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a4/
LA  - ru
ID  - ZVMMF_2015_55_1_a4
ER  - 
%0 Journal Article
%A E. D. Kalinin
%T Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 46-55
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a4/
%G ru
%F ZVMMF_2015_55_1_a4
E. D. Kalinin. Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a4/

[1] Kalinin E. D., “Modifikatsiya odnogo metoda resheniya mnogoparametricheskoi spektralnoi zadachi dlya sistem slabosvyazannykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 53:7 (2013), 1058–1066 | DOI

[2] Abramov A. A., “Modifikatsiya odnogo metoda resheniya nelineinoi samosopryazhennoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 39–43

[3] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O nekotorykh svoistvakh nelineinoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 638–645

[4] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O nelineinoi spektralnoi zadache dlya gamiltonovykh sistem vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 999–1002

[5] Volkmer H., Multiparameter eigenvalue problems and expansions theorems, Springer-Verlag, Berlin–Heidelberg, 1988

[6] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975

[7] Abramov A. A., Ulyanova V. I., “Odin metod resheniya samosopryazhennykh mnogoparametricheskikh spektralnykh zadach dlya slabo svyazannykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 37:5 (1997), 566–571