Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 22-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first boundary value problem for a one-dimensional singularly perturbed convection-diffusion equation with variable coefficients on a finite interval is considered. For the regular component of the solution, unimprovable a priori estimates in the Hölder norms are obtained. The estimates are unimprovable in the sense that they fail on any weakening of the estimating norm.
@article{ZVMMF_2015_55_1_a2,
     author = {V. B. Andreev},
     title = {Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {22--33},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a2/}
}
TY  - JOUR
AU  - V. B. Andreev
TI  - Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 22
EP  - 33
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a2/
LA  - ru
ID  - ZVMMF_2015_55_1_a2
ER  - 
%0 Journal Article
%A V. B. Andreev
%T Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 22-33
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a2/
%G ru
%F ZVMMF_2015_55_1_a2
V. B. Andreev. Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a2/

[1] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996

[2] Dobrovolski M., Roos H.-G., “A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes”, Z. Anal. Anwendungen, 16:4 (1997), 1001–1012 | DOI

[3] Linss T., Layer-adapted meshes for reaction-convection-diffusion problems, Lecture Notes in Mathematics, 1985, Springer, Berlin, 2010 | DOI

[4] O'Riordan E., Shishkin G. I., “A technique to provide parameter-uniform convergence for a singularly perturbed convection-diffusion equation”, J. Comput. Appl. Math., 206 (2007), 136–145 | DOI

[5] O'Riordan E., Shishkin G. I., “Parameter uniform numerical methods for singularly perturbed elliptic problems with parabolic boundary layers”, Applied Numerical Math., 58 (2008), 1761–1772 | DOI

[6] Andreev V. B., “Ravnomernaya setochnaya approksimatsiya negladkikh reshenii singulyarno vozmuschennogo uravneniya konvektsii-diffuzii v pryamougolnike”, Differents. ur-niya, 45:7 (2009), 954–964

[7] Kopteva N., O'Riordan E., “Shishkin meshes in the numerical solution of singularly perturbed differential equations”, Int. J. Numer. Anal. and Modeling, 7:3 (2010), 393–415

[8] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859

[9] Kellogg R. B., Stynes M., “Corner singularities and boundary layers in a simple convection-diffusion problem”, J. Differ. Equat., 213 (2005), 81–120 | DOI

[10] Andreev V. B., “Ravnomernaya setochnaya approksimatsiya negladkikh reshenii smeshannoi kraevoi zadachi dlya singulyarno vozmuschennogo uravneniya reaktsii-diffuzii v pryamougolnike”, Zh. vychisl. matem. i matem. fiz., 48:1 (2008), 90–114

[11] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957

[12] Shishmarev I. A., Vvedenie v teoriyu ellipticheskikh uravnenii, Izd-vo MGU, M., 1979

[13] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948

[14] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1962

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1971

[17] Protter M. H., Weinberger H. F., Maximum principles in differential equations, 2nd ed., Springer, Berlin–Heidelberg, 1984

[18] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974