Binary functions of multivalued arguments: generalization and investigation of disjunctive normal forms for such functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 135-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of disjunctive normal forms is generalized to binary functions of multivalued arguments. Fundamental concepts and properties of these generalizations are considered. An efficient method for constructing disjunctive normal forms for binary functions of multivalued arguments with a small number of zeros is proposed. Disjunctive normal forms of an analogue of the Yablonsky function are studied in detail.
@article{ZVMMF_2015_55_1_a11,
     author = {A. V. Panov},
     title = {Binary functions of multivalued arguments: generalization and investigation of disjunctive normal forms for such functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {135--144},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a11/}
}
TY  - JOUR
AU  - A. V. Panov
TI  - Binary functions of multivalued arguments: generalization and investigation of disjunctive normal forms for such functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 135
EP  - 144
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a11/
LA  - ru
ID  - ZVMMF_2015_55_1_a11
ER  - 
%0 Journal Article
%A A. V. Panov
%T Binary functions of multivalued arguments: generalization and investigation of disjunctive normal forms for such functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 135-144
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a11/
%G ru
%F ZVMMF_2015_55_1_a11
A. V. Panov. Binary functions of multivalued arguments: generalization and investigation of disjunctive normal forms for such functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a11/

[1] Yablonskii S. V., Lupanov O. B., Diskretnaya matematika i matematicheskie voprosy kibernetiki, v. 1, Nauka, M., 1974

[2] Platonenko I., O realizatsii algoritmov tipa “Kora” s pomoschyu resheniya sistem bulevykh uravnenii spetsialnogo vida, VTs AN SSSR, M., 1983

[3] Baskakova L. V., Zhuravlev Yu. I., “Model raspoznayuschikh algoritmov s predstavitelnymi naborami i sistemami opornykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 21:5 (1981), 1264–1275

[4] Abdugaliev U. A., “O normalnykh formakh $k$-znachnoi logiki”, Kibernetika, 1967, no. 1, 16–20

[5] Nurlybaev A. N., “O normalnykh formakh $k$-znachnoi logiki”, Sb. po matem. kibernetike, 1, VTs AN SSSR, M., 1976, 56–68

[6] Zhuravlev Yu. I., Kogan A. Yu., “Realizatsiya bulevykh funktsii s malym chislom nulei diz'yunktivnymi normalnymi formami i smezhnye zadachi”, Dokl. AN SSSR, 285:4 (1985), 795–799

[7] Zhuravlev Yu. I., Kogan A. Yu., “Algoritm postroeniya diz'yunktivnoi normalnoi formy, ekvivalentnoi proizvedeniyu levykh chastei bulevykh uravnenii nelsonovskogo tipa”, Zh. vychisl. matem. i matem. fiz., 26:8 (1986), 1243–1249

[8] Kogan A. Yu., “O diz'yunktivnykh normalnykh formakh bulevykh funktsii s malym chislom nulei”, Zh. vychisl. matem. i matem. fiz., 27:6 (1987), 924–931