Basic properties of lattices of cubes, algorithms for their construction, and application capabilities in discrete optimization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 121-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic properties of a new type of lattices — a lattice of cubes — are described. It is shown that, with a suitable choice of union and intersection operations, the set of all subcubes of an $N$-cube forms a lattice, which is called a lattice of cubes. Algorithms for constructing such lattices are described, and the results produced by these algorithms in the case of lattices of various dimensions are illustrated. It is proved that a lattice of cubes is a lattice with supplements, which makes it possible to minimize and maximize supermodular functions on it. Examples of such functions are given. The possibility of applying previously developed efficient optimization algorithms to the formulation and solution of new classes of problems on lattices of cubes.
@article{ZVMMF_2015_55_1_a10,
     author = {R. V. Khachaturov},
     title = {Basic properties of lattices of cubes, algorithms for their construction, and~application capabilities in discrete optimization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {121--134},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a10/}
}
TY  - JOUR
AU  - R. V. Khachaturov
TI  - Basic properties of lattices of cubes, algorithms for their construction, and application capabilities in discrete optimization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 121
EP  - 134
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a10/
LA  - ru
ID  - ZVMMF_2015_55_1_a10
ER  - 
%0 Journal Article
%A R. V. Khachaturov
%T Basic properties of lattices of cubes, algorithms for their construction, and application capabilities in discrete optimization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 121-134
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a10/
%G ru
%F ZVMMF_2015_55_1_a10
R. V. Khachaturov. Basic properties of lattices of cubes, algorithms for their construction, and application capabilities in discrete optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a10/

[1] Gratzer G., General lattice theory, Akademie-Verlag, Berlin, 1978

[2] Khachaturov V. R., Khachaturov R. V., “Reshetka kubov”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 1, 45–51

[3] Khachaturov V. R., Khachaturov R. V., “Reshetki kubov i supermodulyarnaya optimizatsiya”, Tr. III mezhdunar. konf., posvyaschennoi 85-letiyu chlena-korrespondenta RAN, professora L. D. Kudryavtseva, MFTI, M., 2008, 248–257

[4] Khachaturov V. R., Matematicheskie metody regionalnogo programmirovaniya, Ekonomiko-matematicheskaya biblioteka, Nauka, M., 1989

[5] Khachaturov V. R., Veselovskii V. E., Zlotov A. V., Kaldybaev S. U., Kaliev E. Zh., Kovalenko A. G., Montlevich V. M., Sigal I. N., Khachaturov R. V., Kombinatornye metody i algoritmy resheniya zadach diskretnoi optimizatsii bolshoi razmernosti, Nauka, M., 2000

[6] Khachaturov V. R., Khachaturov R. V., Khachaturov R. V., Supermodular programming on finite lattices. Communications on applied mathematics, Dorodnicyn Computing Centre of RAS, 2009, 60 pp.

[7] Leontev V. K., Izbrannye zadachi kombinatornogo analiza, MGTU, M., 2002

[8] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Fizmatlit, M., 2005