Investigation and improvement of biased Monte-Carlo estimates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 10-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical statistical modeling of the free path of a particle in a collision transport model with allowance for an external force acceleration is based on time stepping. For the corresponding deterministic relative error, a new constructive estimate is obtained, which is used to choose a suitable step size. The standard statistical “local estimates” of the particle flux density are biased because the contributions made by the collisions in a “local ball” of small radius are set to zero to make the variance bounded. Practically effective estimates of the corresponding relative error are presented. Additionally, a uniform optimization of a histogram-type functional estimate of the particle distribution density is presented assuming that the corresponding statistical ensemble is Poisson distributed. It turns out that the deterministic error in optimal (in terms of time complexity) versions of the considered algorithms is close to the statistical error.
@article{ZVMMF_2015_55_1_a1,
     author = {G. Z. Lotova and G. A. Mikhailov},
     title = {Investigation and improvement of biased {Monte-Carlo} estimates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {10--21},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a1/}
}
TY  - JOUR
AU  - G. Z. Lotova
AU  - G. A. Mikhailov
TI  - Investigation and improvement of biased Monte-Carlo estimates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 10
EP  - 21
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a1/
LA  - ru
ID  - ZVMMF_2015_55_1_a1
ER  - 
%0 Journal Article
%A G. Z. Lotova
%A G. A. Mikhailov
%T Investigation and improvement of biased Monte-Carlo estimates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 10-21
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a1/
%G ru
%F ZVMMF_2015_55_1_a1
G. Z. Lotova; G. A. Mikhailov. Investigation and improvement of biased Monte-Carlo estimates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 10-21. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a1/

[1] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Ucheb. posobie dlya stud. vuzov, Akademiya, M., 2006

[2] Akkerman A. F., Modelirovanie traektorii zaryazhennykh chastits v veschestve, Energoatomizdat, M., 1991

[3] Kolchuzhkin A. M., Uchaikin V. V., Vvedenie v teoriyu prokhozhdeniya chastits cherez veschestvo, Atomizdat, M., 1978

[4] Marchenko M., “PARMONC — A software library for massively parallel stochastic simulation”, Lect. Notes in Comput. Sci., 6873, 2011, 302–315 | DOI

[5] Averina T. A., Mikhailov G. A., “Algoritmy tochnogo i priblizhennogo statisticheskogo modelirovaniya puassonovskikh ansamblei”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1005–1016

[6] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976

[7] Lotova G. Z., “Modification of the “double local estimate” of the Monte Carlo method in radiation transfer theory”, Russ. J. Numer. Analys. Math. Modell., 26:5 (2011), 491–500 | DOI

[8] Mikhailov G. A., Lotova G. Z., “Chislenno-statisticheskaya otsenka potoka chastits s konechnoi dispersiei”, Dokl. AN, 447:1 (2012), 18–21

[9] Mikhailov G. A., “Polnaya intensivnost v tsentre sfery, osveschennoi potokom izlucheniya”, Fiz. atmosfery i okeana, 11:7 (1975), 753–754

[10] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo IVMiMG SO RAN, Novosibirsk, 2000

[11] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Fizmatlit, M., 1979