@article{ZVMMF_2015_55_1_a0,
author = {A. R. Aliev and E. Kh. Eyvazov},
title = {Finite-difference proof of the completeness of eigenfunctions of the {Sturm{\textendash}Liouville} operator in conservative form},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {3--9},
year = {2015},
volume = {55},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/}
}
TY - JOUR AU - A. R. Aliev AU - E. Kh. Eyvazov TI - Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 3 EP - 9 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/ LA - ru ID - ZVMMF_2015_55_1_a0 ER -
%0 Journal Article %A A. R. Aliev %A E. Kh. Eyvazov %T Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 3-9 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/ %G ru %F ZVMMF_2015_55_1_a0
A. R. Aliev; E. Kh. Eyvazov. Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/
[1] Zaliznyak V. E., Osnovy vychislitelnoi fiziki, v. 1, Vvedenie v konechnoraznostnye metody, Tekhnosfera, M., 2008
[2] Zverev V. G., “Ob odnoi spetsialnoi raznostnoi skheme dlya resheniya kraevykh zadach teplomassoobmena”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 265–278
[3] Kurkin A. A., Nelineinaya i nestatsionarnaya dinamika dlinnykh voln v pribrezhnoi zone, NGTU, N. Novgorod, 2005
[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989
[5] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985
[6] Shi D., Chislennye metody v zadachakh teploobmena, Mir, M., 1988
[7] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2007
[8] Kerimov M. K., “Priblizhennoe vychislenie sobstvennykh znachenii i sobstvennykh funktsii differentsialnykh operatorov tipa Shturma–Liuvillya metodami teorii regulyarizovannykh sledov”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 409–446
[9] Otelbaev M. O., “O koertsitivnykh otsenkakh reshenii raznostnykh uravnenii”, Tr. MIAN SSSR, 181, 1988, 241–249
[10] Pryce J. D., Numerical solution of Sturm–Liouville problems, Clarendon Press, Oxford, 1993
[11] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972
[12] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2003
[13] Plancherel M., “Le passage à la limite des équations aux différences aux équations différentielles dans les problèmes aux limites”, Bull. Sci. Math. (Darboux Bull.), 47 (1923), 153–160
[14] Plancherel M., “Le passage à la limite des équations aux différences aux équations différentielles dans les problèmes aux limites”, Bull. Sci. Math. (Darboux Bull.), 47 (1923), 170–177
[15] Steklov V. A., “O razlozhenii dannoi funktsii v ryad po garmonicheskim funktsiyam”, Soobscheniya matem. ob-va. Kharkov, 6:2 (1896), 57–124
[16] Krulikovskii N. N., Puti razvitiya spektralnoi teorii obyknovennykh differentsialnykh operatorov, TGU, Tomsk, 2008
[17] Levitan B. M., Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Gostekhizdat, M., 1950
[18] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, Inostr. lit., M., 1960