Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite-difference method is used to prove the completeness of the eigenfunctions of the Sturm–Liouville operator in conservative form. The finite-difference schemes corresponding to the conservative Sturm–Liouville equation with various boundary conditions are shown to be self-adjoint. The accuracy and convergence of the method are analyzed, and the properties of eigenvalues and eigenvectors of the difference scheme approximating the differential equation and the boundary conditions are examined.
@article{ZVMMF_2015_55_1_a0,
     author = {A. R. Aliev and E. Kh. Eyvazov},
     title = {Finite-difference proof of the completeness of eigenfunctions of the {Sturm{\textendash}Liouville} operator in conservative form},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--9},
     year = {2015},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - E. Kh. Eyvazov
TI  - Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 3
EP  - 9
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/
LA  - ru
ID  - ZVMMF_2015_55_1_a0
ER  - 
%0 Journal Article
%A A. R. Aliev
%A E. Kh. Eyvazov
%T Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 3-9
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/
%G ru
%F ZVMMF_2015_55_1_a0
A. R. Aliev; E. Kh. Eyvazov. Finite-difference proof of the completeness of eigenfunctions of the Sturm–Liouville operator in conservative form. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_1_a0/

[1] Zaliznyak V. E., Osnovy vychislitelnoi fiziki, v. 1, Vvedenie v konechnoraznostnye metody, Tekhnosfera, M., 2008

[2] Zverev V. G., “Ob odnoi spetsialnoi raznostnoi skheme dlya resheniya kraevykh zadach teplomassoobmena”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 265–278

[3] Kurkin A. A., Nelineinaya i nestatsionarnaya dinamika dlinnykh voln v pribrezhnoi zone, NGTU, N. Novgorod, 2005

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[5] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985

[6] Shi D., Chislennye metody v zadachakh teploobmena, Mir, M., 1988

[7] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2007

[8] Kerimov M. K., “Priblizhennoe vychislenie sobstvennykh znachenii i sobstvennykh funktsii differentsialnykh operatorov tipa Shturma–Liuvillya metodami teorii regulyarizovannykh sledov”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 409–446

[9] Otelbaev M. O., “O koertsitivnykh otsenkakh reshenii raznostnykh uravnenii”, Tr. MIAN SSSR, 181, 1988, 241–249

[10] Pryce J. D., Numerical solution of Sturm–Liouville problems, Clarendon Press, Oxford, 1993

[11] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[12] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2003

[13] Plancherel M., “Le passage à la limite des équations aux différences aux équations différentielles dans les problèmes aux limites”, Bull. Sci. Math. (Darboux Bull.), 47 (1923), 153–160

[14] Plancherel M., “Le passage à la limite des équations aux différences aux équations différentielles dans les problèmes aux limites”, Bull. Sci. Math. (Darboux Bull.), 47 (1923), 170–177

[15] Steklov V. A., “O razlozhenii dannoi funktsii v ryad po garmonicheskim funktsiyam”, Soobscheniya matem. ob-va. Kharkov, 6:2 (1896), 57–124

[16] Krulikovskii N. N., Puti razvitiya spektralnoi teorii obyknovennykh differentsialnykh operatorov, TGU, Tomsk, 2008

[17] Levitan B. M., Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Gostekhizdat, M., 1950

[18] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, Inostr. lit., M., 1960